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Abstract

The application of mathematical analysis to the study of wireless ad hoc networks has met with
limited success due to the complexity of mobility and traffic models, the dynamic topology, and
the unpredictability of link quality that characterize such networks. The ability to model
individual, independent decision makers whose actions potentially affect all other decision
makers renders game theory particularly attractive to analyze the performance of ad hoc
networks. In this paper, we describe how various interactions in wireless ad hoc networks can be
modeled as a game. This allows the analysis of existing protocols and resource management
schemes, as well as the design of equilibrium-inducing mechanisms that provide incentives for
individual users to behave in socially-constructive ways. We survey the recent literature on game
theoretic analysis of ad hoc networks, highlighting its applicability to power control and
waveform adaptation, medium access control, routing, and node participation, among others.
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1 Introduction

A wireless ad hoc network is characterized by a distributed, dynamic, self-organizing
architecture. Each node in the network is capable of independently adapting its operation based
on the current environment according to predetermined algorithms and protocols. Analytical
models to evaluate the performance of ad hoc networks have been scarce due to the distributed
and dynamic nature of such networks. Game theory offers a suite of tools that may be used
effectively in modeling the interaction among independent nodes in an ad hoc network. In this
paper we describe how such games can be set up and discuss some recent advances in this area.
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1.1 Basics of game theory

Game theory is a field of applied mathematics that describes and analyzes interactive decision
situations. It provides analytical tools to predict the outcome of complex interactions among
rational entities, where rationality demands strict adherence to a strategy based on perceived or
measured results. The main areas of application of game theory are economics, political science,
biology and sociology. From the early 1990s, engineering and computer science have been added
to this list.

We limit our discussion to non-cooperative models that address the interaction among individual
rational decision makers. Such models are called “games” and the rational decision makers are
referred to as “players.” In the most straightforward approach, players select a single action from
a set of feasible actions. Interaction between the players is represented by the influence that each
player has on the resulting outcome after all players have selected their actions. Each player
evaluates the resulting outcome through a payoff or “utility” function representing her objectives.
There are two ways of representing different components (players, actions and payoffs) of a
game: normal or strategic form, and extensive form. Here we will focus on the normal form
representation. Formally, a normal form of a game G is given by G = <N A {ui}> where

N ={1,2,...,n} is the set of players (decision makers), A; is the action set for player i,

A=A x A, x---x A isthe Cartesian product of the sets of actions available to each player, and
{u;} ={uy,...,u,} is the set of utility functions that each player i wishes to maximize, where

u, : A— R. For every player i, the utility function is a function of the action chosen by player i,
a;, and the actions chosen by all the players in the game other than player i, denoted as a ;.
Together, a; and a_; make up the action tuple a. An action tuple is a unique choice of actions by
each player. From this model, steady-state conditions known as Nash equilibria can be identified.
Before describing the Nash equilibrium we define the best response of a player as an action that
maximizes her utility function for a given action tuple of the other players. Mathematically, a is
a best response by playerito a_; if

a e {argmaxu, (a,,a_)}

A Nash equilibrium (NE) is an action tuple that corresponds to the mutual best response: for each
player i, the action selected is a best response to the actions of all others. Equivalently, a NE is an
action tuple where no individual player can benefit from unilateral deviation. Formally, the
action tuple a" = (a, ,a,,a;,...,.a,) isaNEif u (a ,a ;) >u,(a;,a) for Va, € A and for
Vie N . The action tuples corresponding to the Nash equilibria are a consistent prediction of the
outcome of the game, in the sense that if all players predict that a Nash equilibrium will occur
then no player has any incentive to choose a different strategy. There are issues with using the
Nash equilibrium as a prediction of likely outcomes (for instance, what happens when multiple
such equilibria exist?). There are also refinements to the concept of Nash equilibrium tailored to
certain classes of games. A detailed discussion of these is outside the scope of this paper.

There is no guarantee that a Nash equilibrium, when one exists, will correspond to an efficient or
desirable outcome for a game (indeed, sometimes the opposite is true). Pareto optimality is often
used as a measure of the efficiency of an outcome. An outcome is Pareto optimal if there is no

other outcome that makes every player at least as well off while making at least one player better
off. Mathematically, we can say that an action tuple a=(a,,a,,a;,...,a,) is Pareto optimal if and
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only if there exists no other action tuple b = (b,,b,,b;,...,b,) such that u;(b) >u;(a) for Vie N,
and for some k € N, u, (b) >u, (a).

To illustrate these basic concepts, consider a peer-to-peer file sharing network modeled as a
normal form game. The players of the game are individual users who experience a trade-off in
sharing their files with others. For simplicity consider a network of three users. Each user has the
option of either sharing her files or not sharing. Thus the action set of each player is {Share, Not
share}. The payoff to each user is given by the sum of the benefits she experiences when other
users share their files, and the cost she incurs by sharing her own files. We assume the users to be
limited in resources. We assign the payoffs such that each user benefits by 1 unit for each other
user that shares files and incurs a cost of 1.5 units in sharing her own files. The payoff matrix can
be represented as in Table 1. In the payoff matrix, the payoff for user 1 is listed first, the payoff
for user 2 is listed second, and the payoff for user 3 is listed third. Rather than attempting to
represent the three dimensional action space as a single object, we have presented the action
space in two two-dimensional slices.

Table 1. A payoff matrix for a three-player peer-to-peer file sharing game

User 2 Share Not share User 2 Share Not share
User 1 User 1
Share 0.5,0.5,0.5 | -0.5,2,-0.5 Share -0.5,-0.5,2 -151,1
Not 2,-0.5,-0.5 11,-15 Not 1-151 0,0,0
share share

User 3 = Share User 3 = Not share

From the payoffs we observe that the best response of each user irrespective of other users’
actions is to not share. The unique NE is the action tuple (Not share, Not share, Not share). Also,
it is evident that no user accrues any benefit by unilaterally deviating and sharing her files. One
should note that the Nash equilibrium is not Pareto optimal in this case. The outcome (Share,
Share, Share) would make all three players better off than the NE action tuple. Those familiar
with game theory will recognize this formulation as a three-player version to the Prisoners’
Dilemma game [1].

1.2 Why game theory?

For over a decade, game theory has been used as a tool to study different aspects of computer and
telecommunication networks, primarily as applied to problems in traditional wired networks. In
the past three to four years there has been renewed interest in developing networking games, this
time to analyze the performance of wireless ad hoc networks. Since the game theoretic models
developed for ad hoc networks focus on distributed systems, results and conclusions generalize
well as the number of players (nodes) is increased. It is also of interest to investigate how selfish
behavior by individual nodes may affect the performance of the network as a whole.

Consider, as an example, an ad-hoc network implementing a pure slotted Aloha protocol. Nodes
are constantly entering and leaving the network, so the number of nodes in the network, n, is not
generally known. As such, the optimal retransmit probability, p=1/n, cannot be globally set to
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maximize throughput. Each node must then adapt its retransmit probability to current network
conditions to maximize its throughput, perhaps guided by channel observations and channel
occupancy estimations. In this way, we can devise an algorithm for a node to attempt to predict
the response of the other nodes in the network without precise knowledge of the total number of
nodes. An important question is whether the algorithm that governs this dynamic adaptation has a
desirable steady-state. Even if it does, how can we be certain that the network behavior will
converge to this steady-state? Will small perturbations to the system dramatically alter behavior?
Will increasing the number of nodes past some point result in undesirable drift? These are the
type of questions that game theory has been utilized to answer, not just with respect to Medium
Access Control (MAC) protocols, but also distributed adaptations at the physical, network and
transport layers.

As seen from Table 1, selfish behavior may lead to a NE that is socially undesirable. Therefore,
from a system designer’s perspective it is imperative to make the network robust to selfish
behavior, perhaps by providing mechanisms that render selfish behavior unprofitable to the nodes
that employ it. Game theory can be used to better understand the expected behavior of nodes and
engineer ways to induce a socially desirable equilibrium.

Our main contributions in the paper are: (a) to develop a case for the applicability of game theory
to ad hoc networks; (b) to list the benefits and challenges of applying game theory to ad hoc
networks; (c) to survey the recent literature on game theoretic analysis of ad hoc networks and
summarize its general conclusions; (d) to provide a game theoretic perspective on incentive
schemes for ad hoc networks; and (e) to illustrate the application of game theory to different
layers in the protocol stack by means of game formulations.

We structure the remainder of the paper as follows. In Section 2 we describe the components of
an ad hoc network game and highlight some benefits of game theory and challenges in the
parameterization of the game. Section 3 describes the current state of research in the development
of game theoretic models for solving problems at different protocol layers. In Section 4 we
provide a brief description on existing incentive mechanisms for ad hoc networks and the use of
game theory in analyzing them. Section 5 points to additional research issues in the application of
game theory to ad hoc networks.

2 Modeling Ad Hoc Networks as Games

In a game, players are independent decision makers whose payoffs depend on other players’
actions. Nodes in an ad hoc network are characterized by the same feature. This similarity leads
to a strong mapping between traditional game theory components and elements of an ad hoc
network. Table 2 shows typical components of an ad hoc networking game.
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Table 2. Typical mapping of ad hoc network components to a game

Components of a game Elements of an ad hoc network
Players Nodes in the network
Strategy Action related to the functionality

being studied (e.g. the decision to
forward packets or not, the setting
of power levels, the selection of
waveform/modulation scheme)
Utility function Performance metrics (e.g.
throughput, delay, target signal-to-
noise ratio)

Game theory can be applied to the modeling of an ad hoc network at the physical layer
(distributed power control and waveform adaptation), link layer (medium access control) and
network layer (packet forwarding). Applications at the transport layer and above exist also,
although less pervasive in the literature. A question of interest in all those cases is that of how to
provide the appropriate incentives to discourage selfish behavior. Selfishness is generally
detrimental to overall network performance; examples include a node’s increasing its power
without regard for interference it may cause on its neighbors (layer 1), a node’s immediately
retransmitting a frame in case of collisions without going through a backoff phase (layer 2), or a
node’s refusing to forward packets for its neighbors (layer 3). In the next section, we outline
game-theoretic models for these three layers. Before that, however, we discuss some of the
benefits and common challenges in applying game theory to the study of ad hoc networks.

2.1 Benefits of applying game theory to ad hoc networks

Game theory offers certain benefits as a tool to analyze distributed algorithms and protocols for
ad hoc networks. We highlight three of those benefits:

a. Analysis of distributed systems: Game theory allows us to investigate the existence,
uniqueness and convergence to a steady state operating point when network nodes perform
independent adaptations. Hence it serves as a strong tool for a rigorous analysis of distributed
protocols.

b. Cross layer optimization: Often in ad hoc networking games, node decisions at a particular
layer are made with the objective of optimizing performance at some of the other layers. With
an appropriate formulation of the action space, game theoretic analysis can provide insight
into approaches for cross layer optimization.

c. Design of incentive schemes: Mechanism design is an area of game theory that concerns
itself with how to engineer incentive mechanisms that will lead independent, self-interested
participants towards outcomes that are desirable from a system-wide point of view. This may
prove especially helpful in the design of incentive schemes for ad hoc networks. We provide
further discussion of incentive schemes in section 4.
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2.2 Challenges in application of game theory to ad hoc networks

The use of game theory to analyze the performance of ad hoc networks is not without its
challenges. We point out three particularly challenging areas:

a. Assumption of rationality: Game theory is founded on the hypothesis that players act
rationally, in the sense that each player has an objective function that it tries to optimize given
imposed constraints on its choices of actions by conditions in the game. Although nodes in an
ad hoc network can be programmed to act in a rational manner, the steady state outcome of
rational behavior need not be socially desirable. Indeed, a major contribution of game theory
is that it formally shows that individually rational, objective-maximizing behavior does not
necessarily lead to socially optimal states.

The assumption of perfect rationality, on some practical occasions, does not accurately reflect
empirically observed behavior (e.g., wide-spread existence of peer-to-peer file sharing
networks in the absence of any punishment/reward schemes). The work in [2] considers an
extension of the NE concept in order to accurately model nodes that deviate slightly from
their expected optimal behavior. This form of weakened rationality is known as near-
rationality.

b. Realistic scenarios require complex models: The dynamic nature of ad hoc networks leads to
imperfection or noise in actions observed by a node. Such imperfections need to be modeled
with reasonably complex games of imperfect information and/or games of imperfect
monitoring. In addition, modeling of wireless channel models and interactions between
protocols at the different layers involves complex and, at times, non-linear mathematical
analysis.

c. Choice of utility functions: It is difficult to assess how a node will value different levels of
performance and what trade-offs it is willing to make. The problem is exacerbated by a lack
of analytical models that map each node’s available actions to higher layer metrics such as
throughput.

3 Game Theory in Ad Hoc Networks - A Layered Perspective

In this section we summarize potential applications of game theory to ad hoc networks,
discussing issues at each layer in the protocol stack.

3.1 Physical Layer

Distributed power control and selection of an appropriate signaling waveform are physical layer
adaptations that may be adopted by a node. From a physical layer perspective, performance is
generally a function of the effective signal-to-interference-plus-noise ratio (SINR) at the node(s)
of interest. When the nodes in a network respond to changes in perceived SINR by adapting their
signal, a physical layer interactive decision making process occurs. This signal adaptation can
occur in the transmit power level and the signaling waveform (modulation, frequency, and
bandwidth). The exact structure of this adaptation is also impacted by a variety of factors not
directly controllable at the physical layer, including environmental path losses and the processing
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capabilities of the node(s) of interest. A game theoretic model for narrowband physical layer
adaptations can be formed using the parameters listed in Table 3.

Table 3. Game theoretic model for physical layer adaptations in ad hoc networks

Symbol Meaning Symbol Meaning
The power space (R")
formed from the
N The set of decision making nodes P Cartesian product of
in the network; {1,2,...,n}. all P;.
P =P, xP, x...xP,
The link gain from i to j. Note this A power profile
may be a function of the (vector) from P
hij waveform selected. P formed as
P =(Ps Pyt Py)-
The network link gain matrix. Q. The set of waveforms
(1 h, hy ... h,] . known by node j.
h 1 : A waveform chosen by
21 . ; .
] j from Q..
H H=|h;, !
The waveform space
formed from the
Mg Py oo 1] Q Cartesian product of
all Qj. Q:xjeNQj'
The set of power levels available A waveform profile
to node j. This is presumed to be a (vector) from Q
Pj subset of the real number line. w formed as
w=(o,0,,.,0,) .
J ﬁpower level chosen by j from u;(p,w, H) The utility derived by
;- J-

From Table 3, the stage game for interactive physical layer adaptations can be modeled as

G :<N,{ijﬂj},{uj(p,w,H)}>

For a general physical layer adaptation game, each node, j, selects a power level, p;, and a
waveform, a, based on its current observations and decision making process. Restricted versions
of this game are commonly encountered in the literature. Distributed power control systems
permit each radio to select pj, but restrict Q; to a singleton set; distributed waveform adaptation
systems (adaptive interference avoidance) restrict the choice of p;, but allow ¢ to be chosen by
the physical layer.

3.1.1 Power control

Power control, though closely associated with cellular networks, is frequently implemented in ad
hoc networks due to the potentially significant performance gains achieved when nodes limit their
power level [3]. The following discussion applies to several proposed distributed power control
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schemes. Although not all of these works adopt a game theoretic approach, the distributed nature
of different proposed algorithms lends itself to the application of game theory.

In [4], an algorithm for performing distributed power control in 802.11 networks is described.
The authors permit the use of ten different power levels and incorporate the necessary signaling
into the exchange of RTS-CTS-DATA-ACK frames. Each node communicates with its neighbor
nodes and chooses a transmit level for each neighbor in such a way that the minimum signal
power required for acceptable performance is achieved. In this scenario, each node can be
modeled as attempting to achieve a target SINR. Although not considered in [4], this could be
modeled using multiple connection reception scenarios as suggested by [5], or each connection
could be treated as a unique entity in the fixed assignment scenario.

A similar algorithm has been proposed by [6], wherein an additional channel is included for
power control. Likewise, [7] introduces “Noise Tolerance Channels” that are analogous to a
power control channel, but instead permit each node to announce its amount of “noise” tolerance
— the additional interference that can be afforded without losing a currently received signal.
Other authors, such as in [8] and [9], have further refined the ad hoc power control problem by
introducing beam forming considerations.

We now model the power control algorithm suggested in [4] as a normal form game. Note that a
similar approach can be followed to model the other distributed algorithms as games, with each
game involving a different utility function. We adopt the notation in Table 3. Here, we are
assuming that each node, i, in the set of nodes, N, is maintaining a single link to its node of
interest, v; As each node is attempting to maintain a target SINR, an appropriate utility function
for it is given by:
2
- hiy, Pi
u. =—|y. — !
i(P)=—7 ot Shp,

jeN, j#i

where o, is the noise at v; and 7, is the target SINR of player i. A game model for this algorithm
is thus given by G =(N,P, {u;}).

We can quickly verify that G has at least one NE by applying the Glicksberg-Fan fixed point
theorem [10] [11]. Assuming the target SINRs are feasible, then the power vector corresponding
to G’s unique NE can be found by solving the linear program given by

Zp=y
hlv1 - 7;1h1v2 . =% hlvn
where Z = _ﬁz:hzvl hZ:vz _?z:hzvﬁ Y= [7;10V1 V20, - Va0, ]T , and
~ Vb, =7l Ny,

p=[p, p, ... p,J.
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While the surveyed algorithms are for ad hoc networks, most power control games, except recent
work in [12] and [13], consider infrastructure-based wireless networks. When choosing a
distributed algorithm for a network, several factors should be considered including steady-state
performance, convergence, complexity, stability, and interaction with other layers’ behavior.
These form some of the active areas of research within the field of distributed power control and
game theory.

3.1.2 Waveform Adaptation

Waveform adaptation in ad hoc networks involves the selection of a waveform by a node such
that the interference at its receiver is reduced. The interference at the receiver is a function of the
correlation of a user’s waveform with the waveforms of the other users in the network. Also, in
general, the individual nodes involved in transmission have no or very little information about the
receiver’s interference environment. Hence to minimize the adaptation overhead, distributed
waveform adaptation algorithms that require a minimal amount of feedback between receivers
and transmitters need to be developed for these networks. Game theory can provide useful
insights to this scenario.

Past work on interference avoidance has concentrated on single-receiver systems. A distributed
interference avoidance algorithm for the uplink of a synchronous CDMA system with a single
base-station is proposed in [14]. In this algorithm, each user sequentially updates its signature
sequence to improve its SINR at the base-station. The signature sequences represent code-on-
pulse spreading codes with chips taking any value in the complex plane. This iterative algorithm
(wherein users greedily increase their SINR) converges to a set of sequences that maximize the
sum capacity of the system [15]. Further, this approach is generalized to the situation where
nodes can adapt their modulation/demodulation methods using a general signal space approach.
Other extensions include sequence adaptation in asynchronous CDMA systems [16], multipath
channels [17] and multi-carrier systems [18].

The use of game theory provides us with a better analysis of the greedy signature update
mechanism and helps us derive convergence conditions. Game theory has been used to show that
for a single receiver system with two players any combination of the metric (such as Mean Square
Error or SINR) and receiver types (such as a correlator or MSINR receiver) results in a game with
convergent Nash equilibrium solutions [19]. A game-theoretic framework to analyze power
control and signature sequence adaptation in synchronous CDMA systems is also presented in
[20]. Properties of the utility function associated with each user in the network that ensure the
existence of a Nash equilibrium for the power and waveform adaptation game are identified, with
Signal to Interference and Noise Ratio (SINR) possessing these properties.

Convergent Nash equilibria are thus seen to exist in greedy waveform adaptation games in a
single centralized receiver scenario. However, in networks with multiple distributed receivers,
application of the same greedy interference avoidance techniques does not lead to a stable NE
([21],[22]) due to the asymmetry of the mutual interference between users at different receivers
(for instance, a user causes more interference at a nearby receiver than at a receiver that is farther
away). This leads to users’ adapting their sequences in conflicting ways. This shows that greedy
interference schemes cannot be directly extended to ad hoc networks. A framework based on
potential game theory such as the one described here can be used to construct convergent
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waveform adaptation games in such a scenario. We refer the reader to [23] for a detailed
discussion.

A potential game [24] is a normal form game such that any change in the utility function of any
player due to a unilateral deviation by that player is correspondingly reflected in a global function
referred to as the potential function. The existence of a potential function makes this type of game
easy to analyze and gives a framework where users can serve the greater good by following their
own best interest, i.e., can maximize a global utility by only trying to maximize their own
utilities. Hence it can lead to simple game formulations where maximizing the utility of users also
improves a global network performance measure. There are a number of different kinds of
potential games, of which exact and ordinal potential games are considered in this section.

Exact and ordinal potential games possess a useful convergence property: players of the game are
guaranteed to converge to a NE by playing their best response. This assures that the waveform
adaptation games constructed according to the framework described below always converge. We
will derive a potential function for the waveform adaptation scenario to formulate it as a potential
game. Again, we adopt the notation in Table 3. Let the utility associated with a particular user be
given by
N N
Ul w,)=fi(m)- Z fz('(a’jva%)' Pjs puhji)_ Z/ij f3(|(“%la’j)' AF pj’hj)
j=L i =L
where: f; quantifies the benefit associated with a particular choice of signature sequence; f, is the
interference measure for user i perceived at its associated receiver due to the other users present
in the system; | is a function of two signature sequences w; and w; (for instance the correlation
between sequences); and function f; is the interference caused by a particular user i at the
receivers associated with other users. In this framework, the transmit power of a user is assumed
to be fixed and independent of the waveform adaptation process.

Let o; be the new signature sequence chosen by user i. Then, by the definition the game is an
exact potential game if there exists a potential function Pot(w) such that

u; (@, 7w—i)_ui((T)i 'w—i): Pot(a, 'w—i)_ Pot(, ’w—i) vi

A candidate potential function, if f,(e)= f,(e), is given by
N N
POt(w)=Z[f1(a’i)_ z fz(l(a)i’a)j ): Pi pjvhji)
i=1 j=L j=i
The game is an ordinal potential game if

U, (@, w,)>u, (o, w ;)< Pot(w,,w ;)= Pot(@,,w ;) Vi
Let the utility function for a user for an ordinal potential game formulation be given by
N N
ui(a)ﬂw—i): fl(wi)_ Z fZi(I(mjva)i)’ Pj, pi)_ Z fsi(l(a)i’a)j)’ Pi; pj)
j=1, j=i j=1, j=i

where fy; is the interference measure for user i perceived at its associated receiver due to the other
users present in the system and function f3; is the interference caused by user i at the receivers
associated with other users. Note that functions f;; and fs; can be different for different users.
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The condition for an ordinal potential game is satisfied if f,(e)= f;(e) and f,(e) is any ordinal
(monotonically increasing) transformation of f (-) where the potential function is given by

o) 3 ) 36l o))

j=L, j#i
This ordinal potential game formulation can be used to construct convergent adaptation games
with each user trying to maximize a different utility function, as long as the utility functions are
ordinal transformations of each other.

The authors in [21] present a distributed sequence adaptation algorithm for networks with no
centralized receiver. The user’s utility function is defined in terms of a new interference measure.
This interference measure is the weighted sum of the interference caused by the particular user at
all the receivers in the system. It is shown that an increase in the utility of any user also results in
the increase of a social function (similar to the potential function), which is the sum of the utilities
of all the users in the system, proving the existence of NE for the system. It can be shown that this
adaptation algorithm is a specific instance of the family of waveform adaptation games
represented by the above mentioned game-theoretic framework.

Feedback is also a significant issue in the implementation of distributed interference avoidance
algorithms. The signature sequence (in the case of the centralized receiver model) or the signature
correlation matrix (in the case of multiple uncoordinated receivers) is required to provide
feedback to each user. This could place a prohibitively expensive burden on network overhead.
The work in [25] proposes that restricting each user’s waveform to a subspace of the waveform’s
original signal space may relieve this burden. Alternately, properties of games such as better
response convergence of potential games can be used to design reduced feedback schemes [26].

It is not difficult to envision that many more complex systems for reducing interference by
appropriate selection of waveforms could help. However, for each new proposed system, the
same issues of convergence and stability will need to be considered. Game theory has the
potential to address these questions in a formal manner.

3.2 Medium Access Layer

The medium access control problem, with many users contending for access to a shared
communications medium, lends itself naturally to a game theoretic formulation. In these medium
access control games, selfish users seek to maximize their utility by obtaining an unfair share of
access to the channel. This action, though, decreases the ability of other users to access the
channel.

One of the earliest applications of game theory to a medium access control problem is the work of
Zander in [27] and [28]. However, the game considered is cooperative in nature and does not
consider contention between selfish nodes themselves. MacKenzie and Wicker pose the slotted
Aloha medium access control protocol itself as a game between users contending for the channel
in [29], [30], and [31]. In their work, users receive a one unit payoff when they transmit
successfully and attempt to maximize the discounted sum of their payoffs over time; the infinite
users’ model is adopted with a finite arrival rate. If transmissions are costless, then users jam the
channel with transmission attempts, resulting in extremely low throughput. If there isa
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transmission cost that must be paid in order to transmit (e.g., energy from a battery), then the
maximum throughput that can be supported by the system can be computed. The authors
concluded that, for optimal values of the cost parameter, the throughput of a slotted-Aloha system
with non-cooperative users may be as high as the throughput that can be obtained with
cooperative users. This work was expanded to CSMA and CSMA/CD in [32] and forthcoming
papers.

Here we will briefly examine the analysis of slotted Aloha; for more details the reader should
refer to [31]. In a given slot, each user has two possible actions: the user can transmit or wait. If
exactly one user chooses to transmit in a given slot, then that user’s transmission is successful. If
multiple users transmit in a slot, then all of their transmissions are unsuccessful. We assume that
the payoff associated with a successful transmission is 1, while the cost of transmission (whether
successful or unsuccessful) is ¢, where 0 < ¢ < 1. A user who waits will receive a payoff of 0; a
user who transmits will receive a payoff of either 1 — c (if the transmission is successful) or —c (if
the transmission is unsuccessful). It is also assumed that each

user has a discount factor 0 < & <1 that is used to discount future payoffs. So, the present value
of waiting for 10 slots and then transmitting with certain success is (1—c)J™ . The goal of a user
is to maximize the expected discounted value of her payoff.

A strategy in this game is then a mapping from the number of backlogged users (assumed to be
known) to a transmit probability; that is, a strategy is a function p:Z" —[01]. Givena
particular Poisson packet arrival rate A, a current backlog n, and a strategy g being followed by
all other users, a user can compute an expected payoff to a particular strategy p. In order for a
strategy p to be an equilibrium strategy, it must be the case that p maximizes the expected payoff
for a player if all other players are also playing p. This assumes that all players are
indistinguishable. The Glicksberg-Fan fixed point theorem [10] [11] can be invoked to prove that
such an equilibrium must exist. In order to apply the theorem, the following conditions must be
satisfied: a finite player set; a compact and convex action space; and continuous utility functions
for each player that are quasi-concave. While quasi-concavity may not be a familiar concept, it is
just a generalization of the more familiar concavity concept, as all concave functions are also
guasi-concave.

It is easy to see that if there are at least two users backlogged (n > 2) then neither always
transmit nor always wait can be equilibrium strategies p. In other words, for n>2, 0 < p(n) <1.
It is also well known, though, that in order for a mixed strategy to be played in a given scenario, it
must be the case that the expected payoffs must be equal from all of the pure strategies in the
support of the mixed strategy. Hence for n > 2, the payoff from transmitting must equal the
payoff from waiting. If the value of the backlog is large, then obviously the expected payoff of
an equilibrium strategy must be near zero. Glossing over some mathematical details presented in
[31], it is then possible to prove the intuitively appealing result that the expected payoff when
transmitting (which is the probability of transmission success) is equal to the transmission cost.
That is, in the limit as n — oo for an equilibrium strategy p we must have:

@-pn)" —>c
In other words, for large n, we must have:
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—Inc

p(n) -

It follows immediately that the throughput of the slotted Aloha system (equal to

np(n)(@— p(n))" ) willgoto —cInc as n — oo. A drift analysis can formalize this argument
to show that the slotted Aloha system will be stable whenever 4 < —clInc. It follows that if

c =e", then the system will be stable for arrival rates up to € *. In other words, for the right
value of c, the throughput of a slotted Aloha system with selfish users is exactly the same as the
throughput of a system in which the users work together to maximize system throughput.

This result has been generalized in [31] to show that the same result holds for other channels
(e.g., when capture is possible in the presence of two or more transmissions). The result suggests
that it may not, in fact, be necessary to assume that nodes are cooperative in order to design an
efficient random access protocol.

One of the main criticisms of the work of MacKenzie and Wicker is their assumption that the
number of backlogged users is known. The work in [33] considers an alternative model in which
the number of backlogged users is unknown, but the total number of users in the system is known
and the users’ retransmit probabilities are static rather than dynamic. They also show that if
transmissions are costly, then the non-cooperative equilibrium throughput may coincide with the
throughput obtained by cooperative users.

In an alternative model, [34] considers heterogeneous users who attempt to obtain a target
throughput by updating their transmit probabilities in response to observed activity. Once the
users’ targets are fixed, potential methods are used to show that the updating process will
converge to a vector of equilibrium transmit probabilities. They also investigate the question of
when the users are able to attain their throughput targets. Furthermore, [35] assumes that users’
throughput targets depend on their utility functions and their willingness to pay, and they describe
a pricing strategy to control the behavior of the users (in order to bring their targets within the
feasibility region).

The work in [36] considers the problem that arises when non-cooperative nodes are introduced
into a network of mostly cooperative users. Specifically, a MAC protocol called Random Token
with Extraneous Collision Detection (RT/ECD) is considered, which is quite similar to the
CSMAV/CA protocol utilized by the distributed coordination function of IEEE 802.11. That work
also proposes a variant of RT/ECD, denoted RT/ECD-1s, which enables cooperative nodes to
maintain a higher share of the bandwidth in the presence of non-cooperative nodes. Recent work
in [37] proposes a game-theoretic model to address the problem of selfish node behavior in
CSMAV/CA with nodes adjusting the random back-off timers to increase throughput. The authors
derive a Pareto optimal point of operation for such a network and apply a repeated game approach
to transform the Pareto optimal point into a Nash equilibrium.

As one can observe, the papers address a variety of different problems using several different
game-theoretic models and approaches. It can also be seen that there are many areas open for
future work. Specifically, the issue of imperfect information with a reasonable feedback model
such as ternary feedback (0, 1, €) has not been suitably addressed. While random access
protocols such as those typically used in LANSs have been modeled, scheduled access problems
such as channel or time-slot assignment have not been adequately addressed.
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3.3 Network Layer

Functionalities of the network layer include the establishment and updating of routes and the
forwarding of packets along those routes. Issues such as the presence of selfish nodes in a
network, convergence of different routing techniques as the network changes, and the effects of
different node behavior on routing, have been analyzed using game theory. We discuss these
next.

3.3.1  Modeling of traditional routing techniques incorporating ad hoc network
characteristics
A recent application of game theory to ad hoc routing [38] focuses on the analysis of the
effectiveness of three ad hoc routing technigques, namely link state routing, distance vector routing
and multicast routing (reverse path forwarding), in the event of frequent route changes. The
objective of the analysis is to compare and contrast the techniques in an ad hoc setting. These
techniques are evaluated in terms of:
e Soundness — whether routers have a correct view of the network to make the correct
routing decisions under frequent network changes;
e Convergence — length of time taken by the routers to have a correct view of the network
topology as nodes move; and
o Network overhead — amount of data exchanged among routers to achieve convergence.

Routing is modeled as a zero sum game between two players — the set of routers and the network
itself. In a zero-sum game [1] the utility function of one player (minimizing player) is the
negative of the other’s (maximizing player). The game has an equilibrium when the minmax
value of any player’s payoff is equal to its maxmin value. In a zero sum game, the maxmin value
is defined as the maximum value that the maximizing player can get under the assumption that
the minimizing player’s objective is to minimize the payoff to the maximizing player. In other
words, the maxmin value represents the maximum among the lowest possible payoffs that the
maximizing player can get; this is also called the safe or secure payoff.

In the routing game the payoff to each player consists of two cost components, one being the
amount of network overhead and the other varying with the performance metric under
consideration. For example, for evaluating soundness the cost to the routers is 0 if all routers have
a correct view of the topology when the game ends and 1 if any one router does not. The
objective of the routers is to minimize the cost function. The action for the routers involved is to
send routing control messages as dictated by the routing technique and update their routing
information, and for the network to change the state of existing links from up to down and vice
versa. The game is solved to determine the minmax value of the cost function. It serves to
compare the different routing techniques in terms of the amount of routing control traffic required
to achieve convergence and the soundness of the routing protocol to network changes. One of the
main conclusions reached in the comparative analysis was that reverse path forwarding requires
less control traffic to achieve convergence, against traditional link state routing.

Another issue related to routing involves studying the effect of selfish nodes on the forwarding
operation, as discussed next.
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3.3.2 Selfish behavior in forwarding packets

The establishment of multi-hop routes in an ad hoc network relies on nodes’ forwarding packets
for one another. However, a selfish node, in order to conserve its limited energy resources, could
decide not to participate in the forwarding process by switching off its interface. If all nodes
decide to alter their behavior in this way, acting selfishly, this may lead to the collapse of the
network. The works of [39] [40] [41] [42] [43] [44] develop game theoretic models for analyzing
selfishness in forwarding packets. Under general energy-constraint assumptions, the equilibrium
solution for the single-stage game results in none of the nodes’ cooperating to forward packets. A
typical game theoretic model that leads to such an equilibrium is parameterized in Table 4. Now,
consider strategy s = {5,,5,,5;,...5, } and let o ={k e N |5, =1}. The utility of any node k e &
is given by
u,(s)= (|0'|—1) -5, =|a|— 2

Let us consider that node k unilaterally deviates to a strategy of not participating. The utility of
node k is given by u, (s;, s, ) =|o] 1. Since u,(s;,5_)>u,(s), strategy S can only be a Nash
equilibrium when o =¢.

Table 4. Game theoretic model for node participation in ad hoc networks

Symbol Meaning Symbol Meaning
N The set of nodes in the ad s s=15,,5,,...5,}; S€8S.
hoc network; {1,2,...n}.
Sy Action set for node k; a,(s) | Benefit accrued when other nodes
S, ={0.1}. .
participate; | e.g.:e ()= D s, |.
i=1,i=k
Sy Action of node k: B, (s) | Benefit (or cost) to node k when it
s, =0 (not participate) and participates; for energy constrained
s, =1 (participate). nodes it is negative
(e.9.: B (8) =5, ).
S Joint action set; uy (s) Utility of the node;
S =Xyen Sk - Uy (s) = a(s) + B (s).

However, in practical scenarios ad hoc networks involve multiple interactions among
nodes/players with a need for nodes to participate. In order to account for such interactions, the
basic game is extended to a repeated game model. Different repeated game mechanisms such as
tit-for-tat [45] and generous tit-for-tat are investigated in [40] [42] and [43] to determine
conditions for a desirable NE — one in which all nodes would forward packets for one another
leading to a high network-wide social welfare. The tit-for-tat based mechanisms provide an
intrinsic incentive scheme where a node is served by its peers based on its past behavioral history.
As a result a node tends to behave in a socially beneficial manner in order to receive any benefit
in the later stages.

The work in [46] extends this concept of exploiting the intrinsic ‘fear’ among nodes of being
punished in the later stages of the game by deriving the conditions under which a grim-trigger
strategy is a Nash equilibrium in a game where nodes are asked to voluntarily provide services for
others (examples of these include peer-to-peer networks and distributed clusters, as well as ad hoc
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networks). A node following the grim trigger strategy in a repeated game is characterized by a
behavior wherein it continues to cooperate with other nodes until a single defection by any of its
peers, following which it ceases to cooperate for all subsequent stages. The sustainability of the
equilibrium for this strategy depends on the number of nodes in the network and the exogenous
beliefs that the nodes have regarding the possible repetitions of the game. The authors conclude
that the greater the number of nodes in the network the higher the chances of achieving a
desirable equilibrium, even if the likelihood that the game will be repeated is low. These games
are different from those analyzed in [41] and [44] as the decisions of the nodes are not based on
an external incentive scheme such as reputation.

Other functions related to the network layer or to the management plane, such as service
discovery and policy-based network management, are also amenable to a game-theoretic analysis.
There is scarce literature on those issues, with the notable exception of [47], which studies
management in a sensor network.

3.4 Transport Layer

At the transport layer, game theoretic models have been developed to analyze the robustness of
congestion control algorithms to the presence of selfish nodes in the network. However, the bulk
of the research has been focused on wired networks [48] [49] [50]. That research could serve as a
starting point in the development of a game theoretic model to analyze congestion control for ad
hoc networks, but it is important to take into consideration the de-centralized nature of the
network and the trade-offs that accompany it.

Focusing the research on a completely independent node set-up, the game formulated in [50]
comprises nodes capable of individually varying their congestion window additive increase and
multiplicative decrease parameters with the objective of increasing their throughput. The effect of
such behavior in conjunction with buffer management policies implemented at the routers is
studied for congestion control algorithms such as TCP-Reno, TCP-Tahoe and TCP-SACK.
However, when applying the conclusions to wireless ad hoc networks it is necessary to consider
the impact of the wireless medium on TCP. Link failures due to mobility and packet losses
caused by impairments of the wireless medium could inadvertently trigger a change in the
congestion window. Therefore in the development of a TCP congestion control game it will be
necessary for a node to consider this effect before making its decision on setting the congestion
control parameters. This could lead to a change in the model parameters and also affect the
outcome of the game.

4 Incentive mechanisms

Selfish behavior by nodes in an ad hoc network may lead to a suboptimal equilibrium [39] [40]
[51] where nodes, through their actions, reach an undesirable steady state from a network point of
view (in addition to often not being Pareto optimal). Hence, incentive mechanisms are proposed
to steer nodes towards constructive behavior (i.e., towards a desirable equilibrium). Incentive
mechanisms are broadly divided into two categories based on their technique of incentivizing
nodes: credit-exchange based systems; and reputation systems. We will briefly mention some of
the incentive mechanisms proposed in the literature and describe how game theory has been
applied to analyze the effectiveness of these incentive schemes.
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4.1 Credit exchange

One of the techniques for providing incentives for nodes to behave in ways that are socially
efficient (i.e., beneficial to the network as a whole) is to adopt a mechanism of charge and reward
[52] [53] [54] [55] [56]. In such a scheme, a node is credited for cooperating with the other nodes
towards a common network goal, and is debited when requesting service from others. One way of
implementing the charge and reward scheme is by the introduction of “virtual currency’ as in
[52]. In this method each node is rewarded with ‘tokens’ for providing service, which are then
used by the node for seeking services from others. One criticism of this method is that it requires
a tamper-proof hardware module to prevent nodes from cheating during “token’ exchange. In
addition, such techniques may be cumbersome to implement as charges and rewards are
calculated on a per packet basis [57].

In order to address the security vulnerability of nodes falsely reporting credit, the concept of
algorithmic mechanism design is leveraged to design pricing policies that lead to truthful
reporting. References [53] [54] [55] [56] develop incentive compatible, cheat-proof mechanisms
that apply the principles of mechanism design to enforce node collaboration for routing in ad hoc
networks, with [58] focusing on multicast routing. In addition, different pricing schemes (such as
in [59],[60]) are often used to engineer an equilibrium that is desirable from the network’s
perspective. A detailed survey of various pricing schemes is outside the scope of this paper.

4.2 Reputation - based mechanisms

Another technique for creating incentives is in the form of reputation that each node gains
through providing services to others. Each node builds a positive reputation for itself by
cooperating with others and is tagged as “misbehaving” otherwise. The nodes that gain a bad
reputation are then isolated from the network over time. Several reputation mechanisms can be
found in the recent literature (such as in [41] [61],[62], [63], and [64]). Game theory has been
used in [41] for the analysis of a reputation exchange mechanism. According to this mechanism, a
node assigns reputation values to its neighbors based on its direct interactions with them and on
indirect reputation information obtained from other nodes. Further, this reputation mechanism is
modeled as a complex node strategy in a repeated game model. The analysis of the game helps to
assess the robustness of the reputation scheme against different node strategies and derive
conditions for cooperation.

There exist other mechanisms that do not involve any logical object (reputation, virtual currency)
in inducing an optimal equilibrium. This includes the generous tit-for-tat mechanism (GTFT)
[45], which has been proposed to solve the problem of misbehaving nodes in routing and
forwarding. In [42], the GTFT technique is employed as a node strategy in a repeated game for
forwarding packets and conditions are derived for it to achieve a socially optimal Nash
equilibrium.

A different approach to inducing a desirable equilibrium requires a centralized authority, a
referee, to enforce that the nodes’ behavior converges to an optimal operating point ([29]
provides an application to wireless networks). This centralized controller is not a player and is
external to the game. Typically, the external entity evaluates the strategy that will result in
system-wide benefit and informs the nodes about it. In addition, it may also change the rules of
the game dynamically during play to ensure optimality in the system. Such an approach is of
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limited applicability to an ad hoc environment, due to the assumption of central control.
However, it may be possible to utilize existing cluster head selection algorithms to select the
appropriate referees and thereby adapt this external equilibrium inducing mechanism to ad hoc
networks.

5 Concluding remarks

The application of mathematical analysis to wireless ad hoc networks has met with limited
success, due to the complexity of mobility and traffic models, coupled with the dynamic topology
and the unpredictability of link quality that characterize such networks. Emerging research in
game theory applied to ad hoc networks shows much promise to help understand the complex
interactions between nodes in this highly dynamic and distributed environment.

The application of game theory to analyze problems at different protocol layers in an ad hoc
network is at a nascent stage, with the bulk of the work done in the past few years. The focus has
been on maximizing throughput using random access techniques for the wireless medium, and on
developing robust techniques to deal with selfish behavior of nodes in forwarding packets. Other
areas to which game theory has been applied include distributed power control and interference
avoidance.

There is significant interest in cross-layer optimizations for wireless networks. Game theory
offers a tool to model adaptations that may occur at different layers of the protocol stack and to
study convergence properties of such adaptations. Recently developed games such as potential
games are finding a larger audience due to their properties regarding the existence of and
convergence to a NE. Also, the employment of game theory in modeling dynamic situations for
ad hoc networks where nodes have incomplete information has led to the application of largely
unexplored games such as games of imperfect monitoring.

Some problems in ad hoc network security are good candidates for analysis employing game
theory. Examples include the modeling of trust and reputation management schemes, and denial
of service attacks and counter-measures. With recent interest in cognitive radios, we believe that
game theory also has a strong role to play in the development and analysis of protocols for ad hoc
networks equipped with such radios.

Acknowledgements

This work was partially supported by a grant from the Office of Naval Research (ONR). Some of
this material is also based upon work supported by the National Science Foundation under Grant
No. CNS-0448131 and by a National Science Foundation Integrated Graduate Education and
Research Training (IGERT) grant (award DGE-9987586).

References
[1] P.K. Dutta, Strategies and Games: Theory and Practice, MIT press, 2001.

[2] N. Christin, J. Grossklags and J. Chuang, “Near rationality and competitive equilibria in networked
systems,” ACM SIGCOMM Workshop on Practice and Theory of Incentives and Game Theory in
Networked Systems (PINS), September 2004.



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 19

[3] J. P. Monks, J. P. Ebert, A. Wolisz, and W. W. Hwu, “A study of the energy saving and capacity
improvement potential of power control in multi-hop wireless networks,” Proc. of the 26™ Annual IEEE
Conf. on Local Computer Networks, November 2001, pp. 550-559.

[4] S. Agarwal, S. Krishnamurthy, R. Katz, and S. Dao, “Distributed power control in ad-hoc wireless
networks,” Intl. Symposium Personal, Indoor and Mobile Radio Communications, 2001, pp. F-59-F-66.

[5] R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE Journal on Selected
Areas in Communications, vol. 13, no. 7, September 1995, pp. 1341-1347.

[6] X. Lin, Y. Kwok, and V. Lau, “Power control for IEEE 802.11 ad hoc networks: issues and a new
algorithm,” Proc. of the Intl. Conf. on Parallel Processing, October 2003, pp. 249-256.

[7]J. P. Monks, V. Bharghavan and W. W. Hwu, “Transmission power control for multiple access wireless
packet networks,” Proc. of the 25" Annual IEEE Conf. on Local Computer Networks, November 2000,
pp. 12-21.

[8] M. Krunz and A. Mugattash, “A power control scheme for MANETS with improved throughput and
energy consumption,” Proc. of the 5™ Intl. Conf. on Wireless Personal Multimedia Communications, vol.
2, October 2002, pp. 771-775.

[9] Z. Huang, C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Topology control for ad hoc networks with
directional antennas,” Computer Communications and Networks, 2002, pp. 16-21.

[10] I. Glicksberg, “A further generalization of the Kakutani fixed point theorem, with application to Nash
equilibrium points,” Proc. of the American Mathematical Society, vol. 3, 1952, pp. 170-174.

[11] K. Fan, “Fixed point and minima theorems in locally convex topological linear spaces,” Proc. of the
National Academy of Sciences, vol. 38, 1952, pp. 121-126.

[12] J. Neel, J. Reed and R. Gilles, “The role of game theory in the analysis of software radio networks,”
SDR Forum Technical Conf., November 2002.

[13] J. Neel, R. Menon, A. MacKenzie and J. Reed “Using game theory to aid the design of physical layer
cognitive radio algorithms,” Conf. on Economics, Technology and Policy of Unlicensed Spectrum, May
2005.

[14] S. Ulukus and R.D. Yates, “Iterative construction of optimum signature sequence sets in synchronous
CDMA systems,” IEEE Transactions on Information Theory, vol. 47, no. 5, July 2001, pp. 1989-1998.

[15] C. Rose, S. Ulukus, and R. D. Yates, “Wireless systems and interference avoidance,” IEEE
Transactions on Wireless Communications, vol. 1, no. 3, July 2002, pp. 415-427.

[16] S. Ulukus, R. D. Yates, “Signature sequence optimization in asynchronous CDMA systems,” Proc. of
IEEE Intl. Conf. Communications, vol. 2, June 2001, pp. 545-549.

[17]J. 1. Concha, S. Ulukus, “Optimization of CDMA signature sequences in multipath channels,” Proc. of
IEEE Vehic. Tech. Conf., vol. 3, May 2001, pp.1978-1982.

[18] D. C. Popescu, C. Rose, “Interference avoidance applied to multiaccess dispersive channels,” Proc. of
the IEEE Intl. Symposium on Information Theory, July 2002.

[19] J. Hicks, A. MacKenzie, J. Neel, J. Reed, “A game theory perspective on interference avoidance,”
IEEE Global Telecommunications Conf., vol. 1, December 2004, pp. 257-261.



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 20

[20] Chi Wan Sung, K.W. Shum and Kin Kwong Leung, “Multi-objective power control and signature
sequence adaptation for synchronous CDMA systems - a game-theoretic viewpoint,” Proc. of the IEEE Intl.
Symposium on Information Theory, July 2003, pp. 335-335.

[21] Chi Wan Sung and Kin Kwong Leung , “On the stability of distributed sequence adaptation for
cellular asynchronous DS-CDMA systems,” IEEE Transactions on Information Theory, vol. 49, no. 7, July
2003, pp. 1828-1831.

[22] Kin Kwong Leung, T.M. Lok and Chi Wan Sung, “Sequence adaptation for cellular systems,” Proc. of
the 57" IEEE Semiannual Vehicular Technology Conf., vol. 3, April 2003, pp. 2066-2070.

[23] R. Menon, A.B. MacKenzie, M.R. Buehrer and J.H. Reed, “A game-theoretic framework for
interference avoidance in ad hoc networks,” June 2005;
http://www.mprg.org/people/gametheory/publications.shtml.

[24] D. Monderer and L. Shapley, “Potential Games,” Games and Economic Behavior, 1996, pp. 124-143.

[25] W. Santipach, and M. L. Honig, “Signature optimization for DS-CDMA with limited feedback,” IEEE
7th Intl. Symposium on Spread Spectrum Techniques and Applications, 2002, vol. 1, pp. 180-184.

[26] R. Menon, A.B. MacKenzie, M.R. Buehrer and J.H. Reed, “Game theory and interference avoidance
in decentralized networks,” Software Defined Radio Technical Conf. and Product Expaosition, 2004.

[27] J. Zander, “Jamming games in slotted Aloha packet radio networks,” Proc. of IEEE Military
Communications Conf., vol. 2, 1990, pp. 830-834.

[28] J. Zander, “Jamming in slotted Aloha multi hop packet radio networks,” IEEE Transactions on
Communications, vol. 39, no. 10, October 1991, pp. 1525-1531.

[29] A. B. MacKenzie and S.B. Wicker, “Selfish users in Aloha: a game theoretic approach,” Proc. of
Vehicular Technology Conf., vol. 3, October 2001, pp. 1354-1357.

[30] A.B. MacKenzie and S.B. Wicker, “Game theory and the design of self-configuring, adaptive wireless
networks,” IEEE Communications Magazine, November 2001.

[31] A.B. MacKenzie and S.B. Wicker, “Stability of multipacket slotted Aloha with selfish users and
perfect information,” Proc. of IEEE INFOCOM, vol. 3, April 2003, pp. 1583-1590.

[32] A.B. MacKenzie, Game Theoretic Analysis of Power Control and Medium Access Control, Ph.D.
Dissertation, Cornell University, May 2003.

[33] E. Altman, R.E. Azouzi, and T. Jimenez, “Slotted Aloha as a stochastic game with partial
information,” Proc. of 1% Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks, March 2003.

[34] Y. Jin and G. Kesidis, “Equilibria of a non-cooperative game for heterogeneous users of an Aloha
network,” IEEE Communications Letters, vol. 6, no. 7, July 2002, pp. 282-284.

[35] Y. Jinand G. Kesidis, “A pricing strategy for an Aloha network of heterogeneous users with inelastic
bandwidth requirements,” Proc. of Conf. on Information Sciences and Systems, Princeton University,
March 2002.

[36] J.Konorski, “Multiple access in ad-hoc wireless LANs with non-cooperative stations,” Proc. of Second
Intl. IFIP-TC6 Networking Conf. on Networking Technologies, Services, and Protocols, May 2002, pp.
1141-1146.



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 21

[37] M. Cagalj, S. Ganeriwal, I. Aad and J-P. Hubaux, “On selfish behavior in CSMA/CA networks,” Proc.
of IEEE INFOCOM, March 2005.

[38] I. Zaikiuddin, T. Hawkins and N. Moffat, “Towards a game-theoretic understanding of ad-hoc
routing,” Proc. of Workshop on Games in Design and Verification, July 2004, in Electronic Notes in
Theoretical Computer Science, vol. 119, no.1, February 2005, pp. 67-92.

[39] A. Urpi, M. Bonuccelli, and S. Giordano, “Modeling cooperation in mobile ad hoc networks: a formal
description of selfishness,” Proc. of the 1% Workshop on Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks, March 2003.

[40] M. Felegyhazi, L. Buttyan, and J.-P. Hubaux, “Nash equilibria of packet forwarding strategies in
wireless ad hoc networks,” to appear in IEEE Transactions on Mobile Computing.

[41] P. Michiardi and R. Molva, “Analysis of coalition formation and cooperation strategies in mobile ad
hoc networks,” Journal of Ad Hoc Networks, vol. 3, no. 2, March 2005, pp. 193-219.

[42] V. Srinivasan et al., “Cooperation in wireless ad hoc networks,” Proc. of IEEE INFOCOM, vol. 2,
April 2003, pp. 808-817.

[43] M. Felegyhazi, L. Buttyan, and J.-P. Hubaux, “Equilibrium analysis of packet forwarding strategies in
wireless ad hoc networks — the dynamic case,” Proc. of the 2" Workshop on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, March 2004.

[44] E. Altman, A.A. Kherani, P. Michiardi and R. Molva, “Non-cooperative forwarding in ad hoc
networks,” INRIA, Sophia-Antipolis, France, Report no. 5116, February 2004,

[45] Robert Axelrod, The Evolution of Cooperation, Basic Books, reprint edition, New York, 1984,

[46] L. A. DaSilva and V. Srivastava, “Node participation in peer-to-peer and ad hoc networks: A game
theoretic formulation,” Workshop on Games and Emergent Behavior in Distributed Computing, September
2004.

[47] L. Johansson, N. Xiong, and H. Christensen, “A game theoretic model for management of mobile
sensors,” Proc. of the 6™ Conf. on Information Fusion, July 2003, pp. 583-591.

[48] S. Shenker, “Making greed work in networks: a game-theoretic analysis of switch service disciplines,”
IEEE/ACM Transactions on Networking, vol. 3, no.6, December 1995, pp. 819-831.

[49] R. Garg, A. Kamra, and V. Khurana, “A game theoretic approach towards congestion control in
communication networks,” ACM SIGCOMM Computer Communications Review, vol. 32, no. 3, July 2002,
pp. 47-61.

[50] A. Akella et al., “Selfish behavior and stability of Internet: A game theoretic analysis of TCP,” Proc
of ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer
Communications, August 2002, pp. 117-130.

[51] P. Michiardi and R. Molva, “A game theoretical approach to evaluate cooperation enforcement
mechanisms in mobile ad hoc networks,” Proc. of the 1* Workshop on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, March 2003.

[52] L. Buttyan and J. P. Hubaux, “Stimulating cooperation in self-organizing ad hoc networks,” ACM
Journal on Mobile Networks and Applications(MONET), vol. 8, no. 5, October 2003, pp. 579-592.



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 22

[53] S. Zhong, J. Chen and Y. R. Yang, “Sprite: A simple, cheat-proof, credit-based system for mobile ad
hoc networks,” Proc. of IEEE INFOCOM, vol. 3, April 2003, pp. 1987-1997.

[54] J. Crowcroft, R. Gibbens, F. Kelly and S. Ostring, “Modelling incentives for collaboration in mobile
ad hoc networks,” Proc. of the 1* Workshop on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, March 2003.

[55] S. Eidenbenz, G. Resta and P. Santi, “COMMIT: A sender-centric truthful and energy-efficient routing
protocol for ad hoc networks with selfish nodes,” Proc. of IEEE Intl. Parallel and Distributed Processing
Symposium- Workshop 12, vol. 13, no. 13, April 2005.

[56] L. Anderegg and S. Eidenbenz, “Ad hoc-VCG: A truthful and cost-efficient routing protocol for
mobile ad hoc networks with selfish agents,” Proc. of 9" Annual Intl. Conf. on Mobile Computing and
Networking (MobiCom 2003), September 2003, pp. 245-259.

[57] V. Srinivasan et. al, “Energy efficiency of ad hoc wireless networks with selfish users,” Proc. of
European Wireless Conf., February 2002.

[58] W. Wang, X.-Y. Li and Y.Wang, “Truthful multicast routing in selfish wireless networks,” Proc. of
10™ Annual Intl. Conf. on Mobile Computing and Networking (MobiCom 2004), September 2004, pp. 245-
259.

[59] Y. Qiu and P. Marbach, “Bandwidth allocation in ad hoc networks: a price-based approach,” Proc. of
IEEE INFOCOM, vol. 2, April 2003, pp. 797-807.

[60] Y. Xue, B. Li, and K. Nahrstedt, “Price based resource allocation in wireless ad hoc networks,” Proc.
of 11" Intl. Workshop on Quality of Service, June 2003.

[61] S. Buchegger and J.Y. Le Boudec, “Performance analysis of the CONFIDANT protocol: cooperation
of nodes — fairness in dynamic ad-hoc networks,” Proc. of the 3™ ACM Intl. Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2002), June 2002.

[62] M.T. Refaei, V. Srivastava, L. A. DaSilva, and M. Eltoweissy, “A reputation-based mechanism for
isolating selfish nodes in ad hoc networks,” Proc. of 2" Annual Intl. Conf. on Mobile and Ubiquitous
Systems (MobiQuitous 2005), July 2005.

[63] S. Marti et al., “Mitigating routing misbehavior in mobile ad hoc networks,” Proc. of 6" Annual
IEEE/ACM Intl. Conf. on Mobile Computing and Networking, April 2000, pp. 255-265.

[64] S. Bansal and M. Baker, “Observation-based cooperation enforcement in ad hoc networks,” technical
report, Computer Science Department, Stanford University, 2003.



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 23

AUTHORS

VIVEK SRIVASTAVA (vsrivast@vt.edu) received his Bachelor’s degree in Electronics Engineering from
V.J.T.1, University of Mumbai in May 2000, and his Master’s degree in Electrical Engineering from
Virginia Tech in May 2003. He is currently pursuing his Ph.D in Computer Engineering at Virginia Tech.
His research interests are in the fields of wireless ad hoc networks, trust management, ad hoc security and
game theory. He was involved in the design of a hands-on “Mobile and Wireless Systems Design” course
at Virginia Tech in Spring 2003.

JAMES O’DANIELL NEEL (janeel@vt.edu) received the M.S. degree in Electrical Engineering from
Virginia Tech in 2002 and his B.S. in Electrical Engineering in 1999 from the same institution. He is
currently pursuing his Ph.D. degree in Electrical Engineering at Virginia Tech. His research interests are in
the fields of software radio, cognitive radio, radio resource management, processor design, and game
theory.

ALLEN B. MACKENZIE (mackenab@vt.edu) is an Assistant Professor in the Bradley Department of
Electrical and Computer Engineering at Virginia Tech. He received his Ph.D. in Electrical Engineering
from Cornell University in 2003. Dr. MacKenzie's research interests focus on applications of game theory
to wireless communications and networking and the role of cooperation and decision science in the
development of agile radios and adaptive networks. He recently received a National Science Foundation
CAREER Award to continue his work in game theory. Dr. MacKenzie is a member of IEEE, ACM, and
ASEE.

REKHA MENON (rmenon@vt.edu) received her Bachelor’s degree in Electronics and Communication
Engineering from Regional Engineering College, Trichy, India in 2000 and her Master’s degree in
Electrical Engineering specializing in wireless communications from Virginia Tech in 2003. She is
currently pursuing a Ph.D degree in Electrical Engineering at Virginia Tech and is a research assistant at
the Mobile Portable and Radio Research Group (MPRG), Virginia Tech. Her research interests include
radio resource management, multiple access systems, and Ultra Wideband techniques.

LUIZ A. DASILVA (ldasilva@vt.edu) is an Associate Professor at Virginia Tech’s Bradley Department of
Electrical and Computer Engineering. He received his Ph.D. in Electrical Engineering at the University of
Kansas and previously worked for IBM for six years. Dr. DaSilva's research interests focus on performance
and resource management in wireless mobile networks and Quality of Service (QoS) issues. He is currently
involved in funded research projects in the application of game theory to model mobile ad-hoc networks
(MANETS), heterogeneous MANETS employing smart antennas, wireless network security, and cognitive
networks, among others. Current and recent research sponsors include NSF, the Office of Naval Research,
Booz Allen Hamilton, and Intel, among others. Dr. DaSilva is a senior member of IEEE and a member of
ASEE.

JAMES HICKS (james.e.hicks@aero.org) received his BSEE from George Mason University (GMU),
Fairfax, VA, in May 1997 and the MSEE, PhD and MS Math degrees from Virginia Polytechnic Institute
and State University, Blacksburg, VA, in May 2000, and Aug. 2003, and May 2004, respectively. James
was an AFCEA Scholar at GMU, a Bradley Fellow at Virginia Tech, the 2002 recipient of Motorola's
Universities Partners in Research (UPR) Award, and the Wireless PCS Track Chair at the IEEE Vehicular
Technology Conference, Fall, 2004. He now currently works at The Aerospace Corporation in Chantilly,
VA.

JEFFREY H. REED (reedjh@vt.edu) is the Willis G. Worcester professor in the Bradley Department of
Electrical and Computer Engineering. Dr. Reed’s areas of expertise are in software radios, smart antennas,
and ultra wideband. His book Software Radio: A Modern Approach to Radio Engineering was published by
Prentice Hall in 2002 and his book An Introduction to Ultra Wideband Communication Systems was
published by Prentice Hall in May 2005. Dr. Reed is a Fellow of the IEEE.

ROBERT P. GILLES (rgilles@vt.edu) received his PhD degree in economics from Tilburg University,
Tilburg, the Netherlands. Since 1991 he has been at Virginia Tech, currently as a professor in the



Srivastava et al., “Using Game Theory to Analyze Wireless Ad Hoc Networks” 24

economics department. His research interests are in the fields of general economic equilibrium theory,
institutional economic theory, and game theory, in particular game theoretic approaches to the formation of
networks. He has acted as reviewer for numerous economic theory and game theory journals. Recently he
has joined MPRG at Virginia Tech to develop game theoretic models of mobile ad-hoc networks.



