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Abstract— One of the distinctive features in a wireless ad
hoc network is lack of any central controller or single point of
authority, in which each node/link then makes its own decisions
independently. Therefore, fully cooperative behaviors, such as
cooperation for increasing system capacity, mitigating interfer-
ence for each other, or honestly revealing private information,
might not be directly applied. It has been shown that power
control is an efficient approach to achieve quality of service (QoS)
requirement in ad hoc networks. However, the existing work has
largely relied on cooperation among different nodes/links or a
pricing mechanism that often needs a third-party involvement.
In this paper, we aim to design a non-cooperative power control
algorithm without pricing mechanism for ad hoc networks. We
view the interaction among the users’ decision for power level
as a repeated game. With the theory of stochastic fictitious
play (SFP), we propose a reinforcement learning algorithm to
schedule each user’s power level. There are three distinctive
features in our proposed scheme. First, the user’s decision at each
stage is self-incentive with myopic best response correspondence.
Second, the dynamics arising from our proposed algorithm
eventually converges to pure Nash Equilibrium (NE). Third, our
scheme does not need any information exchange or to observe
the opponents’ private information. Therefore, this proposed
algorithm can safely run in a fully selfish environment without
any additional pricing and secure mechanism. Simulation study
demonstrates the effectiveness of our proposed scheme.

Index Terms— Wireless Ad Hoc Networks, Power Control,
Non-cooperative, Repeated Games, Stochastic Fictitious Play,
Reinforcement Learning, Nash Equilibrium.

I. INTRODUCTION

THE POWER control in a wireless ad hoc network deals
with the selection of proper transmission power for each

packet at each link in a distributed fashion. This is a complex
and intriguing problem since the selection of the power level
fundamentally affects many aspects of the operation of the
network and its resulting performance; for instance the quality
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of the signal received at the receiver, the interference it creates
for the other receivers and energy consumption at each node.
In traditional emergency or military situations, the nodes in
an ad hoc network usually belong to the same authority
with certain common objectives. To maximize the overall
system performance, nodes usually work in a fully cooperative
way and can unconditionally follow the designated algorithm
with a system optimization method [20], [37], [40]. Recently,
emerging applications of ad hoc networks are envisioned in
civilian and commercial usage, where nodes typically do not
belong to a single authority and may not pursue a common
goal. The usual assumption of spontaneous willingness to
cooperate is unrealistic for autonomous users, especially when
there are conflicting interests among the users [3], [28], [32].
The autonomous nature of this evidently affects many aspects
in the design of ad hoc networks including the selection power
level, which is the focus of study in this paper.

In the power control scheme of ad hoc networks, there
are usually two fundamentally conflicting objects. On the
one hand, the higher the Signal-to-Interference plus Noise
Ratio (SINR), the better the service a receiving node can
expect; on the other hand, this higher SINR is achieved at the
expense of increased drainage on the battery consumption and
higher interference to the signals of other users. If each user
demonstrates totally selfish behavior, the network performance
may significantly degrade, even leading to interrupted service
[9], which is called tragedy of the commons in economics.
Therefore, to deploy an ad hoc network successfully in a
self-organized manner, the issue of cooperation stimulation
should be solved. Most of the existing works rely on a pricing
mechanism as an incentive to a certain degree to facilitate
cooperation among self-interested users in power control for
cellular systems [2], [3], [18], [25], [30], [38], and ad hoc
networks [19], [22]. However, such a pricing mechanism is
often difficult to configure and implement in ad hoc networks,
since there lacks a central controller or/and there is no single
creditable node in wireless ad hoc networks. There have been
fine attempts using cryptographic techniques [39] or mech-
anism design [31] to implement the distributed and reliable
price-based incentive scheme, yet these can incur significant
overheads in the overall protocol design. For example, to bring
about incentive-, communication-, and algorithm compatibility
in the mechanism design, these need to be a combination
of payments, redundancy, problem partitioning, and crypto-
graphic techniques [31]. Each user may perform redundant
computation as a checker, which creates the opportunity for a
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catch-and-punish scheme that provides incentives for rational
nodes to be faithful. It should be noted that there still needs
to be a bank to detect manipulation and discuss appropriate
reactions to detected manipulations.

Our work is motivated by the demand of a new power
control with low complexity for wireless ad hoc networks,
in which there are no creditable agent(s) and no infrastructure
support. In this paper, we formulate the power control in ad
hoc networks with non-cooperative games. To avoid the com-
plexity incurred by a pricing mechanism, the power control
decision of each user requires a rational self-incentive property.
The self-incentive property means that the designated dynam-
ics should largely comply with each user’s self-interests, that
is, the user runs spontaneously with the given update rule.
Specifically, we answer the following two questions: Does
there exist a control rule with a self-incentive property for non-
cooperative power control game? How to design a rational
self-incentive dynamics to approximate the Nash Equilibrium
(NE) of the non-cooperative power control game?

To formulate the non-cooperative power control analytically,
we first model the self-interest property for power control in
ad hoc networks. In general, the concept of utility, a term
in microeconomics, is commonly used [10], [30]. The utility
refers to the level of satisfaction the decision-taker receives
as a result of its actions. In this paper, we construct a utility
model with the consideration of both the QoS requirement and
the energy-efficiency property. Based on the utility model, we
then formulate the power control problem with the theory of
non-cooperative games.

Power control in wireless ad hoc networks is inherently a
repeated process. It is natural to model the interaction among
users with repeated games [14]. Our argument is that every
rational user has the motivation to improve its performance
during the interaction even if they are selfish by nature. Based
on this observation, we can set up the rational dynamics in the
stage game. With this dynamics, each user will be endowed
with sufficient intelligent behavior to make a correct decision.
Consequently, we introduce the learning theory in games to
complete the stage game design [15]. Of the many existing
learning models in games, one of the best known is fictitious
play (FP). In FP and its variant, each user chooses the best
response to its beliefs about its opponents, which is given
by the time average of past play. Interestingly, this myopic
learning process is consistent with the desirable self-incentive
property in non-cooperative power control design. To cope
with observing the opponents’ private information problem,
we propose a utility based reinforcement learning algorithm
with SFP framework, which makes a myopically optimal
decision (MOD) for the next stage under current observation.
Here, MOD means that users update their strategies each using
the best response to the strategies of the others. This learning
process only needs to observe its own action and the derived
utility, which avoids the complex security and mechanism
implementations incurred by information exchange or obser-
vation.

The challenging problem in this scheme is how to guarantee
the convergence of the learning dynamics in the repeated
game. To this end, we first show that the non-cooperative
power control with utility function is a supermodular game.

The supermodularity reflects the interdependence among the
users’ actions. Furthermore, it provides a strong evidence that
the user has the incentive to learn the environment for im-
proving its own utility. According to the continuous dynamics
arising from SFP, we show that the behavior of MOD can
almost surely converge to a bounded set of NE. To avoid
observing the opponents’ private information completely, we
introduce a utility-based reinforcement learning algorithm. By
exploiting the utility structure, we can significantly speed up
the convergence. It is an inherently two-time-scale dynam-
ics in the proposed learning algorithm. With the stochastic
approximation theory, it can be proved that the dynamics of
the utility-based reinforcement learning algorithm is almost
surely an asymptotic psedudotrajectory of the flow defined
by the SFP dynamics. Furthermore, it can be shown that,
in the supermodular games, the mixed NE of SFP learning
dynamics is unstable. We can therefore present the important
result that the dynamics of our utility based SFP learning
algorithm almost surely converges to a pure Nash Equilibrium
(PNE). It is a very interesting property for the non-cooperative
power control problem of wireless ad hoc networks.

Our work is the first step toward exploring the learning
theory in repeated games to design non-cooperative power
control, which can eliminate the performance degradation
incurred by selfish behavior. We provide the following two
important insights:

• Firstly, for non-cooperative power control with required
QoS in wireless ad hoc networks, we show that the self-
incentive dynamics using the MOD exist in the learning
process.

• Secondly, the self-incentive learning dynamics can con-
verge to the set of PNE. The simulation results show that
the required QoS performance can always be guaranteed
with a feasible assumption. For the energy-efficiency
utility, the average performance loss in the steady state is
about 13%− 20% compared with the system optimum.

The remaining sections of the paper are organized as
follows. In Section II we introduce the preliminary knowledge
on repeated games, learning theory and supermodular games.
In Section III we formulate the non-cooperative power control
problem formally with the non-cooperative power control
game. We also present the design objective and challenges.
In Section IV we propose the utility based stimulus-response
learning algorithm within the SFP framework. To get a high
convergence rate, we further propose an improved algorithm
by exploiting the utility structure. In Section V the conver-
gence of the learning dynamics is investigated. The simulation
study is included in Section VI to show the validity and
efficiency of our proposed algorithm. In Section VII, we
summarize some related work on power control and non-
cooperative behavior in wireless networks. Finally, we present
in Section VIII an overview of this paper.

II. NOTATION AND PRELIMINARIES

A. Notation

To make readers easy to follow, we begin by briefly
summarizing notation and definitions in the paper, which is
shown in Table I.
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TABLE I

THE SUMMARIZATION OF THE NOTATION

Notation Definition
N the number of active links (users) at a certain

time slot.
N the set of all users {1, . . . , N}. So |N | =

N .
Ai the finite action set of user i, i ∈ N .
πi the mixed strategies for user i, i ∈ N .
Si the set of mixed strategies for user i, i ∈ N .
Ui the utility function of user i, i ∈ N .
pi the power level of user i, i ∈ N .
γi the SINR of user i, i ∈ N .
G the non-cooperative power control (NPC)

game [N , {Pi} , {Ui (·)}].
BRi (·) smooth best response function.

π̇i the perturbed best response dynamic π̇i =
BRi (π−i) − πi

F (x) game differential equation dx
dt

= F (x)
ℵ the set of fixed points {x ∈ X : F (x) = 0}

of game differential equation
L (x) the limit set of state x :

{z ∈ X : limt→∞ Ψtx = z}
Ψt (Q) invariant set Q ⊂ �n for F

B. Preliminaries

The process of fictitious play (FP) is one of the most widely
used learning models [14], [15]. In this process, users behave
as if they think they are facing a stationary, but unknown,
distribution of opponents’ strategies. At each stage, FP makes
MOD based on its observed environment. Therefore, it is a
suitable learning method among self-interested users. In this
Section, we introduce the basic concept of FP and its variant,
stochastic fictitious play (SFP), in the repeated games.

Supermodular games are those characterized by “strategic
complementarities” – basically, this means that when one
player takes a higher action, the others want to do the same.
In power control, the conflict of the QoS requirement from
users has the property of “strategic complementarities”, that
is, once one user increases its own power level for improving
the QoS, the other users may increase those power levels to
guarantee their own QoS requirements. Supermodular games
are particularly interesting because they tend to be analytically
appealing – they have nice comparative statics properties and
behave well under various learning rules [29].

1) Learning Theory in Repeated Games: A repeated game
is the repeated play of a particular stage game. Non-
cooperative power control is inherently a repeated process.
Each user collects local information about the network en-
vironment and the decision about power level is then made
locally. New information (perhaps dependent on actions in
the prior periods) are emergent, the decision process repeats
itself. In this paper, we model the users’ interaction in power
control with a repeated game.

a) Fictitious Play: In this subsection, we define the
process of fictitious play (FP). We first introduce some
notations to describe normal form games. A N player1

normal form game G is defined by a collection of finite
action sets A1, . . . ,AN and a collection of utility functions
U1, . . . ,UN . We assume that player i has a fixed finite set
Ai = {1, . . . , |Ai|} of pure strategies, called player i’s action

1In this paper, we use the terms “user”, “player” and “link” interchangeably.

space. Player i’s utility function Ui is a map from the set
of action profiles of A = ΠjAj to the real line. Finally,
A−i = Πj �=iAj denotes the set of action profiles of player
i’s opponents.

The set Si of the mixed strategies for player i is the unit
simplex ∆ni−1 ⊂ �ni of the dimension ni − 1

Si =

{
πi ∈ �ni

+ :
∑

k∈Ai

πk
i = 1 and πk

i ≥ 0 for all k ∈ Ai

}
.

We identify Si with the set of probability measures on Ai. If
ai ∈ Ai, ai ∈ Si denotes the corresponding vertex (i.e. the lth
component of ai is 1 for ai = l and 0 otherwise). The game’s
state space is the following compact convex polyhedron

Σ = S1 × . . . × SN ⊂ �n1
+ × . . . × �nN

+ .

The payoffs to player i are determined by its utility function
Ui : Ai ×A−i → �.

The model of FP supposes that players choose their actions
in each period to maximize that period’s expected payoff given
the opponents’ empirical frequencies of actions. One can think
of the FP as a mechanism employed by the users to select their
actions. At each time step, t = 0, 1, . . ., users propose action
vector

a (t) := (a1 (t) , . . . , aN (t)) ,

where ai (t) ∈ Ai is the label of the action proposed by user i.
The objective is to construct a mechanism so that the proposed
actions, a (t), ultimately converge at a large enough t. In the
FP, the scheduled action at step t is a function of past proposed
actions over the interval [0, t − 1] as follows. First, enumerate
the actions available to user i as Ai. For any j ∈ [1, |Ai|], let
κj

i (t) denote the total number of times the user i proposed
action Aj

i up to stage t. We define the empirical frequency
vector, ρi (t) ∈ �|Ai|, of the user i as follows:

ρi (t) =

(
κ1

i (t − 1)
t − 1

. . .
κ
|Ai|
i (t − 1)

t − 1

)
.

Now we define the FP process. At stage game t, user i
selects action ai (t) ∈ Ai in accordance with maximizing
its expected utility as though all the other users make an
independent random selection of their actions, Πj �=iρj (t), i.e.
ai (t) ∈ argmaxα∈Ai Ea−i

[Ui (α, a−i)]. Noticing that this
is an “inclusion”, since the best response correspondence for
these beliefs is not necessarily single-valued. The discontinuity
inherent in determinate FP is troubling descriptively and can
lead to poor long-term performance.

b) Stochastic Fictitious Play: Since best responses are
generically pure, a player’s choices under determinate FP
are often sensitive to the exact value of its beliefs. Small
changes in beliefs can lead to discrete changes in behavior.
Even when beliefs converge to NE, actual behavior may not
be the case. In particular, the behavior can never converge
to the mixed equilibrium of a game. To contend with these
issues, Fudenberg and Levine [15] introduced SFP. In this
model, each player i chooses a strategy πi to maximize the
perturbed utility

Ui (πi, π−i) + ληi (πi) , (1)
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where λ > 0 is a temperature parameter that controls the
level of randomization, ηi : Si → � is a player-dependent
smoothing function, which is a smooth, strictly differentiable
concave function such that as πi approaches the boundary of
Si, the slope of ηi becomes infinite. The conditions on ηi

mean that, for the fixed π−i, there is a unique maximizing
πi, so we can define the smooth best response function

BRi (πi) = argmax
πi

{Ui (πi, π−i) + ληi (πi)} . (2)

A typical example of perturbation functions that satisfy these
conditions is the entropy function H (·) :

H (πi) = −πT
i log (πi) =

∑
ai∈Ai

−πi (ai) log πi (ai) . (3)

For any λ > 0, we can explicitly solve for BRi as

BRi (π−i) [ai] =
exp ((1/λ)Ui (ai, π−i))∑

ri∈Ai
exp ((1/λ)Ui (ri, π−i))

. (4)

We are interested in small values of λ > 0 because for
such values, BRi (π−i) approximately maximizes user i’s
unperturbed utility.

2) Supermodular Games: S-modular games are developed
in [34] for games where the strategy space Si of player
i is a compact sublattice of �m. By sublattice, we mean
that it has the property that for any two elements a and b
which are contained in Si, also the component-wise minimum
min (a, b) (denoted by a ∧ b) and component-wise maximum
max (a, b) (denoted by a∨b) are contained there. In particular,
a compact sublattice has component-wise smallest and largest
elements. In the following, we present the main results for
the case of m = 1. Consider N players, and the utility
of player i corresponding to the N -dimensional vector of
strategies x is denoted by Ui (x). Let κ denote the space of
all strategies. We present the property of increasing differences
(supermodularity) with the following definition [4].

Definition 1: The utility function Ui for player i is super-
modular if and only if for all x, y ∈ κ

Ui (x ∧ y) + Ui (x ∨ y) ≥ Ui (x) + Ui (y) .

Consider the case that Ui is a twice differentiable function. It
is supermodular in x = (x1, . . . , xN ) if it has the increasing
differences property, i.e., ∂2U(x)

∂xi∂xj
≥ 0 for all x ∈ κ and j �=

i. For one-dimension discrete strategy space, the increasing
differences property can be stated that the difference Ui (a)−
Ui (a′) is (strictly) increasing in aj , i.e.

Ui (ai, a−i) − Ui (a′
i, a−i) ≥ Ui

(
ai, a

′
−i

)− Ui

(
a′

i, a
′
−i

)
(5)

for ai ≥ a′
i and a−i ≥ a′

−i.
Remark 1: It should be noted that the condition (5) for

increasing differences can be extended to the mixed strategy
πi.

Proposition 1: A game G = [N , {Pi} , {Ui (·)}] is super-
modular if for each player i ∈ N ,
(i) the strategy Pi is a nonempty and compact sublattic,
(ii) the utility function Ui is continuous in all players’
strategies, is supermodular in player i’s own strategy, and has
increasing differences between any component of player i’s
strategy and any component of any other player’s strategy.

III. NON-COOPERATIVE POWER CONTROL GAME

In this paper, we propose a non-cooperative power control
with self-incentive dynamic property in self-interested ad hoc
networks, which does not need a pricing mechanism and can
avoid implementational complexity. We emphasize that self-
incentive dynamic property, where the user is willing to obey
the designated dynamics with a myopic view of its selfish
interest. A key component for describing the selfish interest
is utility function. In this section, we present a utility model
for power control, which considers both the QoS requirement
and the energy-efficiency property. With the utility model,
we formalize the power control problem with non-cooperative
games. Finally, we state the design objective and highlight the
challenging problems.

A. Utility Model

The goal in power control in wireless networks is to ensure
that no user’s SINR γi falls below its required threshold γ∗

i

chosen to ensure adequate QoS, i.e., to maintain

γi ≥ γ∗
i , ∀i (6)

where the subscript i is the set of users.
Considering a wireless ad hoc network with a set N =

{1, . . . , N} of distinct node pairs. Each link consists of one
dedicated transmitter and one dedicated receiver. We designate
the transmitted power and SINR for the ith user by pi (
pmin

i ≤ pi ≤ pmax
i ) and γi, respectively. The users’ transmit

power vector is denoted by p = (p1, . . . , pN ). We denote the
background (receiver) noise within the user’s bandwidth by σi.
In the deterministic formulation of the power control problem
for wireless networks, the noise power σi is dealt with a
constant. We use a “snapshot” model with the assumption that
link gains evolute slowly with respect to the SINR evolution.
In this problem formulation, the SINR of the ith user is

γi (p) =
pihii

σi +
∑

j �=i pjhji
, (7)

where hii is the link gain from the ith user’s transmitter Ti to
its intended receiver Ri, and hji is the link gain from the jth
user’s transmitter Tj to the ith user’s receiver Ri. We denote
the interference plus noise of user i by

Ii

(
p−i

)
= σi +

∑
j �=i

pjhji. (8)

To pose the power control problem as a non-cooperative
game, we need to define a utility function suitable for data
applications. Most data applications are sensitive to error but
tolerant to delay. It is clear that a higher SINR level at the
output of the receiver will generally result in a lower bit
error rate and hence higher throughput. However, achieving
a high SINR level requires the user terminal to transmit
at a high power, which in turn results in low battery life.
Moreover, a user with high power will increase the magnitude
of the interference it creates for other receivers. This trade-
off can be quantified by defining the utility function of the
average amount of data received correctly per unit of energy
consumption

ui (p) =
Ti (p)

pi
, (9)
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where Ti (p) is the effective throughput (goodput). We assume
that transmitters use variable-rate M-QAM, with a bounded
probability of symbol error and trellis coding with a nominal
coding gain. Thus, the effective throughput Ti (p) can be well
approximated [35] by

Ti (p) = W log2

(
1 +

γi (p)
Ω

)
, (10)

which is a function of global power vector p and channel
conditions. Here, W is the bandwidth of the channel, and
Ω ≥ 1 is the gap between uncoded M-QAM and the capacity,
minus the coding gain.

Considering both the QoS requirement (6) and energy
efficient utility (9), we express the utility of user i formally
as follows

Ui

(
pi, p−i

)
=

{
W log2(1+γi(p)/Ω)

pi
if γi (p) ≥ γ∗

i ,

0 otherwise.
(11)

B. Non-cooperative Power Control Game

In this subsection, we formulate the users’ selfish be-
havior with a non-cooperative game framework. Let G =
[N , {Pi} , {Ui (·)}] denote the non-cooperative power control
(NPC) game where N = {1, . . . , N} is the index set for active
users currently in an ad hoc network, Pi is the strategy set,
and Ui (·) is the utility function of user i. Each users selects
a power level pi such that pi ∈ Pi. Let the power vector
p = (p1, . . . , pN) ∈ P denote the outcome of the game in
terms of the selected power levels of all the users, where
P is the set of all power vectors. The utility function (11)
demonstrates the strategic interdependence among users. The
level of utility each user gets depends on its own power level
and also on the choice of other players’ strategies, through
the SINR of that user. We assume that each users’ strategy
is rational, that is, each user maximizes its own utility in a
distributed fashion. Formally, the NPC game G is expressed
as

max
pi∈Pi

Ui (pi, p−i) , for all i ∈ N , (12)

where Ui is given in (11) and Pi =
[
pmin

i , pmax
i

]
is the strategy

space of user i. In this game p is the strategy profile, and the
strategy profile of user i’s opponents is defined to be p−i =
(p1, . . . , pi−1,pi+1, . . . , pN ), so that p = (pi, p−i). A similar
notation will be used for other quantities.

User i’s best response is BRi (p−i) =
arg maxpi∈Pi Ui (pi, p−i), i.e., the pi that maximizes
Ui (pi, p−i) given a fixed p−i. With the best response
concept, we can present the following definition for the Nash
Equilibrium (NE) of NPC game G [16].

Definition 2: A strategy profile p∗ is a Nash Equilibrium
(NE) of NPC game G if it is a fixed point of the best response,
i.e. Ui

(
p∗i , p

∗
−i

) ≥ Ui

(
p′i, p

∗
−i

)
for any p′i ∈ Pi and any user

i.
The NE concept offers a predictable, stable outcome of a

game where multiple agents with conflicting interests compete
through self-optimization and reach a point where no player
wishes to deviate. However, such a point does not necessarily
exist. In general, we have the following result of the sufficient

condition for the existence of an NE in a non-cooperative game
[30].

Proposition 2: An NE exists in NPC game G =
[N , {Pi} , {Ui (·)}] if, for all i = 1, . . . , N :
(i) The strategy profile Pi is a nonempty, convex, and compact
subset of some Euclidean space �n.
(ii) Ui (·) is continuous in p and quasi-concave in pi.

To be compatible with the SFP framework, we discretize
the continuous power profile pi ∈ Pi =

[
pmin

i , pmax
i

]
as the

following

pi (ai) =
(

1 − ai

Mi

)
pmin

i +
ai

Mi
pmax

i , ai = 0, . . . , Mi. (13)

Then the action of user i is denoted by an integer

ai ∈ Ai = {0, . . . , Mi} . (14)

The NPC game G = [N , {Pi} , {Ui (·)}] can be converted
to the discrete form Gd = [N, {Ai} , {Ui}], i.e., each user
chooses its strategy to maximize its own utility

max
πi∈Si

πT
i Ui (ai, π−i) , ∀i. (15)

The concept of NE in discrete NPC game Gd is similar to that
of NPC game G.

C. Design Objective and Challenging Problems

In this subsection, we present the design objective and chal-
lenging problems in NPC game. First, we give a precondition
of our design. We define the feasible power vector set

pfeasible= {p ∈ P , γi (p) ≥ γ∗
i , ∀i} . (16)

As in [20], we give the following assumption:
Assumption: Given the routing and MAC protocol, N

concurrent users can transmit data successfully and satisfy
the QoS constraint (6), i.e., there is feasible power vector set
pfeasible at a particular schedule.

In the discrete strategy space Ai with feasible power vector
set pfeasible , we can observe that the utility function (11)
does not have the quasi-concave property for pure action ai

or mixed strategy πi, which is different from the utility of the
energy-effiency power control design in [30]. To investigate
the existence of NE in NPC game Gd, we should refer to the
graceful property of supermodular games.

Our aim is to design non-cooperative power control in
wireless ad hoc networks with self-interested users. We apply
the repeated games to model the interaction among the users’
power decisions. Compared with the related work [13], the
fundamental difficulty is that the NE of a repeated game
with utility (11) is unknown. Therefore, the simple tit-for-
tat (TFT) punishment mechanism in repeated games can not
be directly applied in this problem. We, hence, introduce
the reinforcement learning method to find each user’s best
decision over its interest. The problem is challenging in several
aspects due to the following constraints:

• Each user can observe its own private information, such
as the historical and current decision and derived utilities.
However, no user can observe its opponents’ private
information. Otherwise, this would result in implementa-
tional complexity.
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• Each user’s power level decision should be self-incentive.
Otherwise, the user would not be willing to obey the
designated dynamics.

The first constraint shows that SFP cannot solve the power
control problem directly because SFP should trace its op-
ponents’ historical decisions. In SFP, each user selects an
action that maximizes its immediate expected payoff under
the assumption that opponents will play a mixed strategy by
the historical frequencies of past plays. The second constraint
shows that the dynamic update rule should be myopic best
response from the user’s view for the environment. However,
the user’s view may be wrong in a certain time period.
Therefore, the challenging problems are: how to design a
non-cooperative power control with the myopic best response
dynamics over private and incomplete information? How to
guarantee the convergence and a satisfactory convergence
speed?

IV. NON-COOPERATIVE POWER CONTROL WITH UTILITY

BASED SFP APPROACH

In this section, we propose a non-cooperative power control
with the myopic best response dynamics over private and
incomplete information. The main disadvantage of SFP is
its requirement to account for the opponents’ historical joint
behavior distribution. In non-cooperative power control, how-
ever, the users only know what payoff they are getting from
their statues quo action. To make SFP sense in private informa-
tion environment, it is clear that the users need to evaluate their
utilities more directly without using the empirical frequencies.
This motivates utility based SFP. Furthermore, we propose an
improved algorithm by exploiting the utility structure. This
will increase the convergence speed in the learning process.

A. Utility Based SFP

To avoid observing opponents’ private information, we
should propose an algorithm only with its own information
in the dynamics. In stage game of power control, user i
selects its action, ai (t), according to a probability distribution
πi (t − 1). User i neither knows the opponents’ action distri-
bution π−i (t − 1) nor the utility Ui (ai (t)) before running its
own action ai (t). But the user i can compute the attainable
utility Ui (ai) with the feedback information from receiver. It
should be noted that the only use of the opponent joint strategy
π−i is in the assessment of the action values Ui (ai, π−i) in
SFP. Accordingly, user i compute an estimate Ūai

i (t) using
the following recursion

Ūai

i (t) =

{ Uai
i (t)−Ūai

i (t−1)

π
ai
i (t)t

+ Ūai

i (t − 1) if ai (t) = ai,

Ūai

i (t − 1) otherwise.
(17)

where Uai

i (t) is the utility obtained by user i at time t.
The distinction between action observation and utility

based SFP is that the users predict their utilities during
the stage game based on the actual utilities correspond-
ing to the previous estimated utilities. At any time step,
t ≥ 1, user i is always assumed to know its own pro-
posed actions, ai (1) , . . . , ai (t − 1), and the probabilities,

πi (1) , . . . , πi (t − 1), with which its own actions were se-
lected. The only additional information required for user i
to estimate its average utility at the time t ≥ 1 is the utilities
Ūai(1)

i (1) , . . . , Ūai(t−1)
i (t − 1). In particular, the users do not

need to compute the empirical frequencies of the past actions
made by any user and compute their expected utilities based
on the empirical frequencies. This significantly alleviates the
implementation and computational bottleneck of SFP.

Once user i computes its estimated utility, Ūi (t), it proposes
an action ai (t + 1) for next time according to a probability
distribution, πi (t) ∈ Si, that maximizes its perturbed utility

πT
i (t) Ūi (t) + λH (πi) , (18)

where H (·) is the entropy function given in Eq. (3).

B. Utility based SFP with Exploiting the Utility Structure

A user does not need to know its own utility structure
in utility based SFP approach. Therefore the recursion (17)
of utility estimate only updates the value of current selected
action. It may result in slow convergence and cannot fit in
the application for power control. Actually, user knows its
utility structure (11) in power control game. With exploiting
utility structure and the measured interference and noise Îi,
the user can get its attainable utility of each action, Ûj

i (t) ,
j = 0, . . . , Mi

Ûj
i (t) =

{
W

log 2

log(1+hiip
j
i/bIi(t) )

pj
i

if hiip
j
i

bIi(t)
≥ γ∗

i ,

0 otherwise.
(19)

Herein,

Îi (t) =
hiip

ai(t)
i (t)

γi (t)
, (20)

where ai (t) is the selected action of user i at stage t.
Therefore, the average utility estimate of every action can be
updated based on current observation as follows

Ūj
i (t) =

⎧⎨⎩ Ūj
i (t − 1) + Ûj

i (t)−Ūj
i (t−1)

tπj
i (t−1)

if j = l,

Ūj
i (t − 1) +

α(Ûj
i (t)−Ūj

i (t−1))
t+α otherwise,

(21)
where α is the filter parameter. Since tπj

i (t) will be approxi-
mately equal to the number of times user i selected the action
j until time t, we can explain that the utility estimate Ūj

i (t)
as an approximation to user i’s average utility for action j
corresponding to those past actions where user i has selected.
Note that α

t+α is decreasing with time evolution and

α

t + α

{ ≥ 0.5 if t ≤ α,
< 0.5 otherwise.

We can thus explain that α is a believable parameter for the
historical learning process. With this manner, we can increase
the learning speed and make it sense for power control.

In the following, we can update the probability distribution
πj

i (t) with maximizing the perturbed utility (18). To guarantee
the convergence, we propose a weighted filter algorithm as
follows:

πj
i (t) =

α2

t2 + α2

exp
(
(1/λ) Ūj

i (t)
)

∑Mi

k=0 exp
(
(1/λ) Ūk

i (t)
) +

t2πj
i (t − 1)

t2 + α2
.

(22)
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Using these update rules, the USFP_EUS algorithm is given
in Algorithm 1.

Remark 2: Given the different time-varying filter parame-
ters in (21) and (22), the algorithm inherently a two-time-scale
dynamics with average utility estimate dynamics (fast dynam-
ics) and probability distribution dynamics (slow dynamics).

Remark 3: USFP_EUS algorithm is based on the SFP
framework. At each stage, the user’s decision is MOD. There-
fore, USFP_EUS algorithm has the self-incentive property.

Remark 4: Eq. (19) shows that each link only needs to
measure its own SINR, which does not need to any message
passing among the links. Eq. (21) shows that the filter algo-
rithm only records the latest average utility estimate. There-
fore, USFP_EUS algorithm is a fully decentralized algorithm
with small memory unit and light computation overhead.

Algorithm 1: USFP_EUS Algorithm
1. For t = 0, initialization:
(i) Draw ai (0) = rand (0, Mi), compute pi (ai (0)) =(

1 − ai(0)
Mi

)
pmin

i + ai(0)
Mi

pmax
i .

(ii) Measure the SINR γi (0) with the feedback information
of the intended receiver, then derive the estimated interference
and noise Îi (0) = hiip

ai(0)
i (0) /γi (0) .

(iii) Compute the attainable utility Ûj
i (0) with Eq. (19) for

all the action j based on the measured Îi (0) .
(iv) Initialize the average utility Ūj

i (0) = Ûj
i (0) ,and the

probability πj
i (0) for the action j = 0, . . . , Mi

πj
i (0) =

exp
(
(1/λ) Ūj

i (0)
)

∑Mi

k=0 exp
(
(1/λ) Ūj

i (0)
) .

2. For time t ≥ 1
(i) Draw ai (t) = l, l ∈ {0, . . . , Mi} randomly ac-

cordingly to the probabilities πi (t − 1), compute pl
i (t) =(

1 − l
Mi

)
pmin

i + l
Mi

pmax
i .

(ii) Measure the SINR γi (t) with the feedback information
of the intended receiver, then derive the estimated interference
and noise Îi (t) with Eq. (20).

(iii) Compute the attainable utility Ûj
i (t) with Eq. (19) for

all the action j based on the measured Îi (t).
(iv) Compute the average utility estimate with Eq. (21) for

j = 0, . . . , Mi.
(v) Update πj

i (t) with Eq. (22) for j = 0, . . . , Mi.

V. CONVERGENCE ANALYSIS

In this Section, we present a formally analysis on our
proposed learning algorithm. First, we show that the su-
permodularity of the non-cooperative power control game.
Second, we show the limit set of continuous time dynamics
arising from SFP in supermodular game converges to the
set of NE of the non-cooperative game. Third, we show
that the dynamics of USFP_EUS algorithm is almost surely
an asymptotic psedudotrajectory of the flow defined by the
smooth best response dynamics (SFP dynamics). Finally,
with the above results, we can derive our main conclusion:
USFP_EUS algorithm is almost surely to converge the set of
pure NE. The detail proof for Theorem 1 and Theorem 3 can
be found in [26].

A. NPC Supermodular Games

We first show that NPC game G and Gd are supermodular
game. It is an important property for our design.

Theorem 1: The continuous NPC with the energy efficient
utility function (9) in continuous strategy space is supermod-
ular game. Moreover, in the set of feasible power vector
pfeasible , the NPC with the utility function (11) are super-
modular games both in discrete pure strategy space and in
mixed strategy space.

The property of increasing differences shows that super-
modular games are games in which each player’s strategy
set is partially ordered, the marginal returns to increasing
one’s strategy rise with increases in the competitors’ strategies.
Supermodular games are of particular interest since they
have Nash Equilibria. The simplicity of supermodular games
makes convexity and differentiability assumptions unnecessary
[30]. The following proposition summarizes several important
properties of supermodular games [20].

Proposition 3: In a supermodular game G =
[N , {Pi} , {Ui (·)}].
(i) The set of NEs is a nonempty and compact sublattice and
so there is a component-wise smallest and largest NE.
(ii) If the users’ best responses are single-valued, and each
user uses the myopic best response updates starting from
the smallest (largest) elements of its strategy space, then the
strategies monotonically converge to the smallest (largest)
NE.
(iii) If each user starts from any feasible strategy and uses
myopic best response updates, the strategies will eventually
lie in the set bounded component-wise by the smallest and
largest NE. If the NE is unique, the myopic best response
updates globally converge to that NE from any initial
strategies.

B. SFP Dynamics in Supermodular Games

In this subsection, we present some results on SFP dy-
namics in supermodular games with stochastic approximation
theory [6], [7], [21].

1) Continuous Time Dynamics Arising From SFP: In SFP,
the empirical frequency vector πi (t) ∈ Si of player i after
the first t ≥ 1 games is the vector

πi (t) =
1
t

t∑
j=1

ai (t) .

The lth component (πi (t))l of πi (t) is the proportion of
times in first t games that player i has played action l ∈ Ai.
We can obtain a recursive definition of πi (t)

πi (t + 1) =
1

t + 1
(tπi (t) + ai (t + 1)) .

We can then compute the expected increments of πi (t)

E (πi (t + 1) − πi (t) |π (t) = π )

=
1

t + 1
[E (ai (t + 1) |π (t) = π ) − π]

=
1

t + 1
(BRi (π−i (t)) − πi (t)

)
.
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Thus, we see that after a reparameterization of time, expected
changes in the time average π (t) are governed by the per-
turbed best response dynamic

π̇i = BRi (π−i) − πi. (23)

This dynamics is defined on the space of mixed strategy
profiles Σ.

Our analysis of the SFP process will relay on a close
connection between the asymptotic behavior of sample paths
of such a stochastic process {π (t)} and the the following
game differential equation

dx

dt
= F (x) . (24)

2) Limit Sets and Chain Recurrence: To understand the
dynamics (23) of SFP, we introduce the concept of limit sets
and chain recurrence.

Consider a dynamic (24) that generates a semiflow Ψ : �+×
X → X on the compact set X ⊂ �n. The set of fixed points
of (24) can be defined as

ℵ = {x ∈ X : F (x) = 0} = {x ∈ X : Ψtx = x for all t ≥ 0}
(25)

The limit set of state x is the set of limit points of the solution
trajectory Ψtx starting at x

L (x) =
{
z ∈ X : lim

t→∞Ψtx = z
}

An invariant set for F is a set Q ⊂ �n such that Ψt (Q) = Q
for all t. For any invariant set Q we denote by Ψ|Q the
restriction of the flow Ψ to Q. Let Q denote a compact
invariant set. A subset K of Q is called an attractor for
Ψ|Q provided by K is nonempty, compact and invariant,
and there is neighborhood Υ ⊂ Q of K with the property
that limt→∞dist(Ψtx, K) = 0 uniformly for x ∈ Υ. Here
dist(Ψtx, K) means the distance from Ψtx to the nearest point
of K . We call Q attractor-free if Q is nonempty compact
invariant set that contains no proper attractor, which means
the attractor of Q is either asymptotically stable limit cycle
and equilibrium or the whole space Q. With the above notion,
we give the limit set theorem from Theorem 3.3 of [7].

Proposition 4: Consider a dynamic (24). With probability
one, the state limit set L (x) , x ∈ X has the following
properties:
(i) L (x) , x ∈ X is an invariant set for the flow of the game
vector field F .
(ii) L (x) , x ∈ X is compact, connected and attractor-free.

Another important concept is chain recurrence. Call a
sequence {x = x0, x1, . . . , xk = y} an ε-chain from x to y
if for each i ∈ {1, . . . , k}, there is a ti > 1 such that
|Ψtixi−1 − xi| < ε. The ε-chain specifies k + 1 segments of
solution trajectories to (24). We call the state x chain recurrent
if there is an ε-chain from x to itself for all ε > 0. We let
� denote the set of chain recurrent points of (24). If every
point of x ∈ X is chain recurrent then Ψ is a chain recurrent
semiflow. If there is ε-chain for all x, y ∈ X , we say that flow
Ψ is chain transitive. Let Λ ⊂ X be a nonempty invariant set.
Ψ is called chain recurrent on Λ if every point q ∈ Λ is a
chain recurrent point for Ψ|Λ. A compact invariant set on
which Ψ is chain recurrent (or chain transitive) is called an

internally chain recurrent (or internally chain transitive) set.
The proposition 5.3 in [6] makes precise the relation between
the difference notions we have introduced.

Proposition 5: Let Λ ⊂ X . The following claims are
equivalent.
(i) Λ is internally chain-transitive.
(ii) Λ is connected and internally chain-recurrent.
(iii) Λ is compact invariant set and Ψ|Λ admits no proper
attractor.

3) Convergence of SFP in Supermodular Games: The
following Theorem states that the SFP dynamics (24) may
converge to the bounded set of the fixed point almost surely.

Theorem 2: Consider SFP πt starting from arbitrary initial
conditions. Suppose that G is a N player supermodular game.
Then

Pr (L{πt} ⊂ ℵ or L{πt} ⊂ 
i ∩ [π, π] for some i) = 1.

where 
i is a Lipschitz submanifold, and every persistent non-
convergent trajectory is asymptotic to a trajectory in an 
i,
[π, π] is the interval of the fixed point set ℵ. In particular, if the
set of fixed points ℵ is {π∗}, then Pr (limt→∞ πt = π∗) = 1.

The proof for the Theorem 2 can be based on the Proposi-
tion 4, Proposition 5 in this paper and Corollary 5.5 in [21].
The detailed proof procedure is omitted here.

C. Convergence of USFP_EUS Algorithm

First, we present a result on the two-time-scale dynamics
property of USFP_EUS algorithm.

Theorem 3: For the USFP_EUS algorithm, each player i

Ūi (t) = Ūi (t − 1) +
1

Γi (t)

(
Ûi (t) − Ūi (t − 1)

)
,

πi (t) =
α2

t2 + α2
BRi

(Ūi (t)
)

+
t2

t2 + α2
πi (t − 1) ,

where Γi (t) =
(
Γ0

i (t) . . . ΓMi

i (t)
)

Γj
i (t) =

{
1

tπj
i (t)

if j = ai (t) ,
α

t+α otherwise,

we have∥∥Ūai

i (t) − Ui (ai, π−i (t))
∥∥→ 0 as t → ∞ a.s.

and a suitable interpolation of the πi (t) processes will almost
surely be an asymptotic psedudotrajectory of the flow defined
by the smooth best response dynamics

π̇i = BRi (π−i) − πi.
The proof of Theorem 3 is based on Bokan’s result on

the asymptotic behavior analysis for two-time-scale coupled
stochastic dynamic systems [8] and asymptotic pseudotra-
jectory relating the SFP dynamic with that of deterministic
dynamic systems [6].

With the above Theorem 2, Theorem 3, Theorem 1 in [11]
and the monotone property for its own action in utility function
(11), we can state our main result in Theorem 4.

Theorem 4: The dynamics arising from the USFP_EUS
algorithm is almost surely to converge the set of pure NE.
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Fig. 1. The relation between the convergence speed and network scale.

VI. NUMERICAL EXAMPLES

We simulate a network contained in a 300m×300m square
area. There are 100 nodes in the square area in a random
placing manner. Two nodes can communication directly if
their distance is no more than 50m. We choose N links
randomly from the square area.

Each user’s utility is Eq. (11). The bandwidth W = 106Hz,
the AWGN noise σi = 1.0 × 10−10 and Ω = 1. The
transmitter powers are 50mW≤ pi ≤ 100mW. The power
gains are given by hij = KSij (d0 /dij )β , where dij is
the distance between the nodes, K and d0 are normalization
constants set to K = 10−6 and d0 = 10m, respectively,
the path loss exponent β = 4, and the shadowing factor
Sij are random, independent and identically generated from
a lognormal distribution with a mean of 0 dB and variance
δ = 8dB (so Sij = 10Nij/10 and Nij is Gaussian with
expectation E [Nij ] = 0 and standard deviation δNij = 8). In
the USFP_EUS algorithm, α = 100, Mi = 49, i = 1, . . . , N .
To overcome the overflow of the exponential operation, we set

λi (t) = max

⎛⎝minj

(
Ūj

i (t) > 0
)

200
,
maxj

(
Ūj

i (t)
)

650

⎞⎠
where minj

(
Ūj

i (t) > 0
)

is the minimum utility of all the
actions with positive utilities at time t.

A. Convergence Speed

The major concern for USFP_EUS algorithm is the con-
vergence speed of the repeated dynamics. In this simulation,
we study the relation between convergence speed and network
scale. We run it 20 times for each N users’ scenario, N =
5, . . . , 10. At each simulation, the USFP_EUS algorithm is
executed with the derived power gains matrix H = [hij ]. The
relation between the convergence speed and network scale is
shown in Fig. 1. Each column represents the results for a
group of simulation with the same number of users, and each
data point is the convergence speed of a single simulation.
Fig. 1 shows that the number of iterations is no more than
350 in all the simulations and the average convergence speed
is about 265. The graph shows that the convergence speed of
the USFP_EUS algorithm is not affected by the network scale.

B. Performance Loss

Another important concern for the distributed
algorithm with selfish utility is the performance
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Fig. 2. Utility performance ratio at different network scales.
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Fig. 3. Utility dynamics with N = 10.

loss compared with the system’s optimum U∗ =
maxpmin�p�pmax

∑N
i=1 Ui

(
pi, p−i

)
.we compute the

utility performance ratio ς at each simulation with
ς =

∑N
i=1 Ui (j) /U∗ , where Ui (j) is the user i’s utility at

steady action j. The utility performance ratios at different
network scales are shown in Fig. 2. This figure illustrates
that the average performance losses are from 13% − 20%
at different network scales. The worst case is no more than
30%.

Finally, we depict the power dynamics in Fig. 3 and utility
dynamics in Fig. 4 using one of simulation results with
N = 10. They validate the convergence of the USFP_EUS
algorithm.

VII. RELATED WORK

A. Power Control in Wireless Networks

The power control in CDMA/TDMA cellular networks
has been extensively studied in the literature. Most of the
work is on designing a power control algorithm to minimize
transmitting power subject to guarantee the SINR of ongoing
connections with the assumption of cooperation among the
users [17], [37]. There is conflicting interest in power control.
Hence, it is appropriate to address power control of cellular
networks within a non-cooperative game-theoretic framework
[3], [23], [25], [30], [38]. To give incentive for a certain degree
of cooperation among the users, they, in general, introduced a
price-based mechanism to constrain the totally selfish utility.
Obviously, the price mechanism has a significant effect on
the users’ behavior, NE and system performance. In cellular
network systems, the price can be managed by base station
[30].

Compared with the cellular networks, little work has been
done on the selfish behavior of power control in wireless
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Fig. 4. Power dynamics with N = 10.

ad hoc networks. In [20], Huang et al. proposed a price-
based power control framework for wireless ad hoc networks.
Assuming that the users voluntarily cooperate by exchanging
interference information, users announce prices to reflect
their sensitivities to the current interference levels, and then
adjust their power to maximize their surplus. They introduced
fictitious non-cooperative games2 as the convergence proof
technique, whereas the actual users in the network are assumed
to be cooperative, i.e., the price dynamics are forced to obey
the system’s optimal conditions. They pointed out that the
power control for non-cooperative users in wireless ad hoc
networks is still an open problem. Our work is motivated by
this problem. However, we do not follow with the pricing
mechanism. We propose a new reinforcement learning algo-
rithm for non-cooperative power control, where the pricing
mechanism is not required. In [22], Ileri et al. studied the
network-geometric dependence of incentivized cooperation in
wireless ad hoc networks with energy-efficient utility function.
They designed a pricing-based joint user-and-network centric
incentive mechanism that induces forwarding among selfish
users by compensating the real and opportunity costs of the
forwarders. However, the work is inherently to need a central
node (access node) for computing the price as in wireless
cellular systems.

In wireless ad hoc networks, the choice of the power level
fundamentally affects the performance of multiple protocol
layers. Recently, there has been much work on formulating the
power control problem with cross layer design. The interested
reader is referred to [10] and cited reference therein. However,
most work assumes that the users are cooperative. Thus, the
cross layer design problem can be converted to the system’s
optimal design. Our future work is to study the effect selfish
behavior has on the cross layer design and non-cooperative
power control with cross-layer design using the proposed
reinforcement learning algorithm from this paper.

B. Non-cooperative Behavior in Wireless Networks

The problem of non-cooperative nodes/links in wireless
networks has been widely addressed in the network layer [5],
[12], [13], [32], [39], MAC layer [9], [27], and application
layer [28], [36], whereas little work has been done on the
power control. Emerging research in game theory is applied to

2It should be noted that the concept of noncooperative fictitious play in
[20] is different from that of the fictitious play in classic learning theory,
which is introduced in this paper.

analyze the non-cooperative behaviors at different layers. They
show much promise in helping to understand the complex
interactions between nodes/links in this highly dynamic and
distributed environment [33].

A one-shot game among self-interested users may result
in extraordinary low utility for each user [9], [13]. However,
much of the users’ selfish behavior at different layers may
overlap many times, which can be modeled with repeated
games. The application of repeated games to model the
interaction among the selfish users is still at the nascent stage
[1], [13], [24]. In [24] and [1], they studied the price incentive
mechanism with dynamic repeated games for Internet routing
and packet forwarding in autonomous mobile ad hoc networks,
respectively. Félegyházi et al. [13] studied the Nash Equilibria
of packet forwarding strategies in wireless ad hoc networks
with the TFT punishment strategy in repeated games. They
have proven that cooperation solely based on the self-interest
of the nodes can in theory exist. However, the conditions of
such cooperation are virtually never satisfied in practice.

In this paper, we consider a multiuser competing wireless
resource viewed as a non-cooperative game, i.e. maximizing
the energy-efficiency performance with the required QoS
constraint of each transceiver, regardless of what all the other
users do. Compared to the related work, our work has the
following unique characteristics. First, our work does not
follow the general pricing mechanism design framework. We
present a reinforcement algorithm with self-incentive dynam-
ics, where the update rule is MOD based on the user’s own
information. Second, our work is the first step in exploring the
combination function between SFP learning in repeated games
and the strategic complementary properties in self-interested
environments for designing non-cooperative power control.
We state that the dynamics arising from the learning dynamics
can eventually converge to a steady state with a satisfactory
performance.

VIII. CONCLUSION

In this paper we have developed a non-cooperative power
control algorithm with repeated games that captures the notion
of repetition. Without complex price and secure mechanisms,
our proposed USFP_EUS algorithm can be executed safely in
a self-interest environment, which is vital for many practical
applications. We provide the important insight that a felicitous
intelligent learning behavior with self-incentive dynamics can
eventually converge to steady state with a satisfactory system
performance. This result may provide an alternative tool to
design a simple protocol for a self-interest environment.
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