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Interference Avoidance in
Networks with Distributed Receivers

R. Menon, A. B. MacKenzie, Member, IEEE, R. M. Buehrer, Senior Member, IEEE, and J. H. Reed, Fellow, IEEE

Abstract—Direct extensions of distributed greedy interference
avoidance (IA) techniques developed for centralized networks
to networks with multiple distributed receivers (as in ad hoc
networks) are not guaranteed to converge. Motivated by this fact,
we develop a waveform adaptation (WA) algorithm framework
for IA based on potential game theory. The potential game model
ensures the convergence of the designed algorithms in distributed
greedy adaptation decreases the total-sum-correlation (TSC)
of the network. Minimization of TSC in CDMA networks
with a central receiver is equivalent to the maximization of
sum-capacity. Hence greedy adaptations could lead to globally
optimal waveforms in centralized networks. WA in multi-
cell networks, where each user communicates with multiple
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collaborative base-stations/receivers, is investigated in [5] and
[6]. It is assumed in these papers that each user’s adaptations
are based on the composite of the received signals at all base-
stations. This assumption makes the interference profiles of
users symmetric and allows the greedy WA algorithms to be
easily extended to multi-cell networks.

Greedy WA algorithms are extended to networks with non-
colocated receivers (i.e. in networks such as ad hoc networks
where users might not have common receivers) in [7]. How-
ever, in these networks the direct application of greedy WA
algorithms does not always lead to convergence. This is caused
by the asymmetry of the mutual interference between users at
different receivers, leading the users to adapt their sequences
in conflicting ways and resulting in resource allocation cy-
cles. (Convergence of the algorithms for distributed networks
developed in [7] can only be established for networks with 2
users.) Since each adaptation, in general, requires considerable
feedback from the receiver to the transmitter, these allocation
cycles are expensive with respect to the network overhead
and are undesirable from a network performance perspective.
Distributed network scenarios in which such situations arise
have been identified in [6] and [8].

Game theory is a branch of applied mathematics that models
interactions between rational decision makers with formalized
incentive (preference) structures and provides tools to predict
and analyze the outcome of these interactions. Game theoretic
models can hence be used for the design and analysis of
distributed algorithms in which individual nodes adapt their
actions and contend for a common resource. The optimality,
convergence, steady-states, and stability of these algorithms
can then be investigated by using properties of game models.
A survey on the use of game theory to analyze wireless ad-hoc
networks is presented in [9].

In this paper, we draw on concepts from game theory to
develop iterative WA techniques for IA that converge to a de-
sirable state in networks (including networks with distributed
receivers). Specifically, we design an adaptation framework
based on potential game theory. Game theory has been previ-
ously used to design and analyze WA algorithms in [3], [4],
[10], [11] and [12]. In [3] and [4], greedy WA for centralized
networks is cast as a potential game with a weighted form
of the TSC function as the potential function. The potential
game formulation is then used to develop new convergence
properties for the algorithms in centralized networks. How-
ever, it can be shown that the TSC is no longer a potential
function when greedy WA is directly extended to distributed
networks. A potential game model is also used in [11] to
design dynamic frequency selection algorithms. However, the
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can be easily extended to asynchronous systems (this is briefly
discussed in Section VII-C).

III. BRIEF SUMMARY OF POTENTIAL GAME THEORY

Consider a normal form game [17] represented as the tuple
Γ =

〈
� , � 𝐴�� �∈𝒦, � 𝑢�� �∈𝒦

〉
. Here, � = � 1, 2, . . . , 	�	� is

the set of players of the game. The set of actions available for
player 𝑘 is denoted by 𝐴� and the utility function associated
with each player 𝑘 by 𝑢�. If the set of all available actions for
all players is represented by 𝐴 = 


�∈𝒦
𝐴�, then 𝑢� : 𝐴 � ℝ.

Player 𝑘 prefers an action profile 𝑎 � 𝐴 over an action profile
𝑎′ if 𝑢� (𝑎) � 𝑢� (𝑎

′). A Nash Equilibrium (NE) for a game is
an action profile from which no player can increase its utility
by unilateral deviations. An action profile, 𝑎 � 𝐴, is a NE if
and only if 𝑢� (𝑎) � 𝑢� (𝑏�, 𝑎−�)  𝑘 � � , 𝑏� � 𝐴�. Here,
(𝑏�, 𝑎−�) =

(
𝑎1, . . . , 𝑎�−1, 𝑏�, 𝑎�+1, . . . , 𝑎∣𝒦∣

)
refers to the

action profile in which the action of user 𝑘 is changed from
𝑎� to 𝑏�, while the actions of the other players remain the
same. Nash equilibria form the steady states of the game.

Suppose that a normal form game is played repeatedly and
in a myopic fashion. At each stage of the game, a set of
players are chosen to make decisions (i.e. adapt their actions)
according to a decision timing rule. The two main classes of
decision timing rules are asynchronous, where no two users
make a decision at the same time instant, and synchronous,
where all users make a decision at the same time instant.
Some examples of asynchronous decision rules are round
robin where at each step all users sequentially update, random
update where at each step a randomly chosen user updates
and random set update where at each step a randomly chosen
subset of users simultaneously update (detailed definitions can
be found in [11]). Note that it is assumed that the impact of the
action updates at any instant can be observed at the subsequent
time instant. The decision making players choose actions that
improve their utility functions. The criteria for a particular
choice of action or the decision making rule give rise to the
best and better response dynamics defined below:

1) Best response dynamic: At each stage, a player 𝑘
deviates from 𝑎� � 𝐴� to an action 𝑏� � 𝐴� if
𝑢� (𝑏�, 𝑎−�) � 𝑢� (𝑐�, 𝑎−�) ,  𝑐� � 𝐴�. Note that a
NE is an action profile, 𝑎 � 𝐴, such that 𝑎� is a best
response for every player 𝑘 � � .

2) Better response dynamic: At each stage, a player 𝑘
deviates from 𝑎� � 𝐴� if there exists an action 𝑏� � 𝐴�

such that 𝑢� (𝑏�, 𝑎−�) > 𝑢� (𝑎�).

A normal form game together with a decision timing rule and
a decision making rule can be used to construct an adaptation
algorithm.

A potential game ([11] and [18]) is a normal form game
such that any changes in the utility function of a player due
to a unilateral deviation by the player are reflected in a global
function referred to as the potential function. The existence
of a potential function thus captures the effect of the actions
of all individual users and gives us a network game whose
convergence and fixed points are easy to analyze. In addition,
if the potential function is also a global network performance
measure, these games give a framework where users can serve
the greater good by following their own best interest.

Based on the relationship between the potential function
and the utility functions of the players in the game, potential
games can be grouped into several classes. We focus on
exact potential games (EPGs) [11], defined below, for the WA
framework developed in this paper.

Definition 1: A normal form game is an EPG if there exists
a function 𝑉 : 𝐴 � ℝ, known as the exact potential function,
that satisfies 𝑢� (𝑎) � 𝑢� (�̂��, 𝑎−�) = 𝑉 (𝑎) � 𝑉 (�̂��, 𝑎−�),
 𝑘 � � , 𝑎 � 𝐴 and �̂�� � 𝐴�.

The NE of a potential game include maximizers of the
potential function. A best response dynamic with an asyn-
chronous decision rule will converge to a NE of the game in
EPGs with continuous utility functions and compact action
spaces. A better response dynamic with an asynchronous
decision rule will also converge in these games. However, in
the latter scenario, they might not necessarily converge to a NE
of the game. Additional properties such as a better response
with a finite minimum step size or a random better response
can however be used to establish the convergence of these
games to the NE as shown in [4].

IV. POTENTIAL GAME FORMULATION FOR WAVEFORM

ADAPTATION

In this section, we cast the WA problem in ad hoc networks
as an EPG. The node-pairs in the network are the players of the
game (� = � 1, . . . ,𝐾 � ). The transmit waveforms available to
the transmit nodes (𝐴� = 𝑆,  𝑘 � � ) are the action sets.
We now seek to to design a utility function for the nodes that
leads to a potential function which is also desirable from a
network perspective.

A. WA as a Potential Game

The SINR at a receive-node is a good indicator of the
throughput and performance of the particular user node-pair.
Hence, the sum of Inverse SINRs (SISINR) of users (or in
other words, weighted sum-interference-and-noise, wherein
the interference at each user’s receive-node is divided by the
power received from its transmitter) in a distributed network
is a possible measure of network performance.

The interference and noise seen at the 𝑘�ℎ receiver in a
distributed network with 𝐾 user node-pairs is given by

𝑖� =

�∑
�=1,� ∕=�

�
𝑝�𝑔��𝑠�𝑏� + 𝑧. (2)

The inverse SINR at the 𝑘�ℎ receiver, assuming a matched
filter, is given by

𝐼� (𝑠�, 𝑠−�) =

𝑠	�

(
�∑

�=1,� ∕=�

𝑠�𝑠
	
� 𝑝�𝑔

2
�� +𝑅



)
𝑠�

𝑝�𝑔2��

=
𝑠	� 𝑅��,�𝑠�
𝑝�𝑔2��

.

(3)

Here, 𝑅��,� is the interference-plus-noise-crosscorrelation ma-
trix given by 𝑅��,� = 𝐸

[
𝑖�𝑖

�
�

]
and 𝑅

 = 𝐸

[
𝑧𝑧�
]

is the
noise covariance matrix. If the noise process is white, 𝑅

 is
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a scalar multiple of the identity matrix. The SISINR of the
network is given by

𝐼�� (𝑠) =

�∑
�=1

𝑠	� 𝑅��,�𝑠�
𝑝�𝑔2��

. (4)

To allow a WA update by each user in the network to reduce
the above function (the weighted sum-interference-and-noise
in the network), the negative of the SISINR function is taken
to be the potential function of the game. The terms of the
potential function, involving the 𝑘�ℎ user can be separated to
yield,

𝑉 (𝑠) = � 𝐼�� (𝑠) = �

𝑠	�

(
�∑

�=1,� ∕=�

𝑠�𝑠
	
� 𝑝�𝑔

2
�� +𝑅



)
𝑠�

𝑝�𝑔2��

�
�∑

�=1,� ∕=�

𝑠	� 𝑠�𝑠
	
� 𝑠�𝑝�𝑔

2
��

𝑝�𝑔2��

�
�∑

�=1,� ∕=�

𝑠	�

(
�∑

�=1,� ∕=�,�

𝑠�𝑠
	
� 𝑝�𝑔

2
�� +𝑅



)
𝑠�

𝑝�𝑔2��︸ ︷︷ ︸
Non-contributing terms

.

(5)

The effect of the actions of the 𝑘�ℎ user is only perceived
in the first two terms. Hence a simple formulation of a utility
function for the 𝑘�ℎ user, such that the negative of the SISINR
function is an exact potential function of the game, is given
by

𝑢� (𝑠�, 𝑠−�) = � 𝑠��𝑋�𝑠�, where

𝑋� =
𝑅��,�

𝑝�𝑔2��
+

�∑
� ∕=�,�=1

𝑠�𝑠
�
� 𝑝�𝑔

2
��

𝑝�𝑔2��
.

(6)

Note that for a unilateral deviation by the 𝑘�ℎ user, from
signature sequence 𝑠� to sequence 𝑠�, 𝑢� (𝑠) � 𝑢� (𝑠�, 𝑠−�) =
𝑉 (𝑠) � 𝑉 (𝑠�, 𝑠−�). It can also be seen that the utility for a
user is made of two terms: the inverse-SINR of the user at its
receive node and the interference caused by the user to all the
other users in the network. A user thus benefits by reducing
the interference caused to the other users in the network in
addition to reducing the interference at its own receiver. In
this way, as opposed to greedy IA games, each user’s utility
function incorporates a measure of the influence of its actions
on the other users in the system.

B. Nash Equilibria of the Game

The utility function for the 𝑘�ℎ user (Equation (6)) can be
re-written as follows since the sequences are normalized:

𝑢� (𝑠�, 𝑠−�) = �
𝑠��𝑋�𝑠�
𝑠�� 𝑠�

. (7)

Matrix 𝑋� can be observed to be a symmetric matrix since it
consists of terms that are the weighted cross-correlations of the
transmit sequences of users and which are hence symmetric. It
is also positive definite since the diagonal terms are positive

and also greater than zero due to the inclusion of the non-
zero noise power terms. Hence the utility function can be
identified to be a negative weighted Rayleigh quotient of 𝑋�.
This is maximized by the eigenvector corresponding to the
minimum eigenvalue of 𝑋� [19]. The best response of the
user to the current state of the network is, therefore, given
by the minimum eigenvector of 𝑋�. At the NE, by definition,
each user’s current action is equal to the best response of the
user to its utility function (in other words the NE is equivalent
to the fixed points of a best-response algorithm). The NE of
the game can thus be characterized by:

𝑋�𝑠� = 𝑎���,�𝑠�, 𝑘 � � , (8)

where 𝑎���,� is the minimum eigenvalue of matrix 𝑋�.
As mentioned before, the NE of a potential game include

the maximizers of the potential function. Since the potential
function given by Equation (5) is continuous and bounded, the
potential function is guaranteed to have at least one maximum
(Weierstrass theorem [20]) and hence at least one NE. The
following theorem characterizes the global maximizers of the
potential function for a subset of possible network scenarios.

Theorem 1: In an under-loaded (number of sequences is
less than the number of dimensions, i.e., 𝐾 < 𝑁 ) and
equally-loaded (number of sequences is equal to the number
of dimensions, i.e.,𝐾 = 𝑁 ) network scenario with a white
noise process (𝑅

 = 𝜎2𝐼�×� ), the potential function 𝑉 (𝑠)
(5) is maximized by a set of orthogonal sequences.

Proof: Let 𝑠� be an orthogonal sequence set with 𝐾 � 𝑁
sequences (i.e. 𝑠�� 𝑠� = 0,  𝑖, 𝑗 � � and 𝑖 �= 𝑗). Then, the
value of the potential function in a network with a white noise
process is given by

𝑉
(
𝑠�
)
= �

�∑
�=1

𝜎2

𝑝�𝑔2��
. (9)

Now consider a sequence set 𝑠 that is not orthogonal. There
exists at least two sequences 𝑠� and 𝑠� in the sequence set
such that 𝑠�� 𝑠� = 𝑎 �= 0. Therefore the value of the potential
function is given by

𝑉 (𝑠) ≤ −
𝑘∑

𝑘=1,𝑘 ∕=𝑖,𝑘 ∕=𝑗

𝜎2

𝑝𝑘𝑔2𝑘𝑘

− 𝑎2𝑝𝑗𝑔
2
𝑗𝑖 + 𝜎2

𝑝𝑖𝑔2𝑖𝑖

− 𝑎2𝑝𝑖𝑔
2
𝑖𝑗 + 𝜎2

𝑝𝑗𝑔2𝑗𝑗

< −
𝑘∑

𝑘=1

𝜎2

𝑝𝑘𝑔2𝑘𝑘

= 𝑉
(
𝑠𝑂
)
.

(10)

This shows that the set of orthogonal sequences maximize
the potential function for the given network scenario. As an
example, if the signal dimensions denote different frequency
bands, the best allocation when 𝐾 < 𝑁 , is to choose
orthogonal frequencies. Note that since the potential function
is given by the negative of the weighted sum interference in
the network, the global maximizer of the potential maximizer
corresponds to a desirable solution for the network.

V. BEST RESPONSE ALGORITHM

As mentioned before, an algorithm can be formulated
for WA by using a decision timing rule to allow users to
update their waveforms according to a decision making rule
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with respect to the utility function designed in the previous
section. In this section, we design an algorithm where users
update their transmit waveforms according to the best response
dynamic using an asynchronous timing rule.

A. Algorithm Description

The best response of a user to the current network state
with respect to the the utility function (6) is the minimum
eigenvector of 𝑋�. The WA algorithm for IA can therefore be
formally written as follows:

Best-response-based SISINR WA Algorithm
1) Fix the transmit-power levels and initialize codeword 𝑠�

for each user.
2) For each 𝑘 � � ,

a) Let 𝑎� be the minimum eigenvector of 𝑋�. If 𝑎� �=
𝑠�, replace 𝑠� by 𝑎�.

3) Repeat step 2 until a fixed point or some termination
criteria is reached

B. Convergence and Fixed Points

It can be seen from the analysis in Section IV-A that each
user update increases the value of the potential function and
hence iteratively decreases the weighted sum interference in
the network. As mentioned before, EPGs exhibit best response
convergence to the NE of the game and the proposed EPG has
at least one NE. Consequently, at least one fixed point exists
for the proposed algorithm and the fixed points of the SISINR
WA algorithm are characterized by Equation (8). Also, as
mentioned before, the NE of a potential game include the
maximizers of the potential function. Therefore, the proposed
algorithm could lead to solutions that minimize the weighted
interference in the network and hence are desirable from the
network perspective.

The following theorem shows that for a subset of network
scenarios (under-loaded and over-loaded), the proposed algo-
rithm leads to the optimal network solution (or the global
maximizer of the potential function). We do not have specific
theoretical results for other network scenarios (including over-
loaded networks). The performance of the algorithm in these
scenarios will be analyzed via simulations.

Theorem 2: In an under-loaded (𝐾 < 𝑁 ) and equally-
loaded (𝐾 = 𝑁 ) network scenario with a white noise process
(𝑅

 = 𝜎2𝐼�×� ), the fixed point of the best-response-
based SISINR WA algorithm correspond to sets of orthogonal
sequences for the users in the network, which are global
maximizers of the potential function and optimal solutions for
the network.

Proof: Let 𝑠∗ be a fixed point of the algorithm (equivalent
to the NE of the game under a best response as is the case
here). Then by (8), 𝑋�𝑠

∗
� = 𝑎���,�𝑠

∗
�, 𝑘 � � . Here, 𝑎���,�

is the minimum eigenvalue of matrix 𝑋�. Let 𝑋� = 𝑋� �
�𝑧𝑧

�𝑘�2
𝑘𝑘

. Then, when the noise is white, the fixed point can be

characterized by 𝑋�𝑠
∗
� = �̂����,�𝑠

∗
�, 𝑘 � � . Here, �̂����,�

is the minimum eigenvalue of matrix 𝑋�. If 𝐾 � 𝑁 and if
the sequence set is orthogonal, 𝑎���,� = 0,  𝑘 since the cross-
correlation between any two sequences is zero. We shall prove

by contradiction that if the sequence set is not orthogonal or
in other words, if 𝑎���,� �= 0,  𝑘, the sequence set is not a
fixed point.

Since the solution sequence set is not orthogonal, there
exists a user 𝑘 � � for whom 𝑋�𝑠

∗
� = 𝑎𝑠∗�, where 𝑎 is a

positive number that is not zero. Consider this user 𝑘 and
the matrix 𝑋 = 𝑋� + 𝑠∗�𝑠

∗�
� . Since the 𝐾 sequences are not

orthogonal and 𝐾 � 𝑁 , the matrix has less than 𝑁 linearly
independent rows or columns. Therefore, the matrix has at
least one eigenvalue that is zero [19]. Also since the matrix is
symmetric with positive diagonal values, all the eigenvalues
of the matrix are non-negative. Therefore zero is the smallest
eigenvalue of the matrix 𝑋 . It follows that zero is also the
smallest eigenvalue of matrix 𝑋�. This is due to the fact that
𝑋� is a symmetric matrix with positive diagonal elements
and hence has non-negative eigenvalues. In addition, since
𝑋� = 𝑋� � 𝑠∗�𝑠

∗�
� , the eigenvalues of 𝑋� are lesser than

or equal to the eigenvalues of 𝑋�.
Since 𝑎 > 0, user 𝑘 can switch to the eigenvector of 𝑋�

that corresponds to the eigenvalue of zero. However, 𝑠∗ is then
not a fixed point of the algorithm which contradicts our initial
assumption.

Note that, in the proposed algorithm, we use a round-
robin decision update scheme. However, the algorithm can
converge with any asynchronous decision update rule. This
allows easier implementations of the proposed algorithm in
practical networks.

C. Simulation-based Performance Evaluation

A distributed network is simulated by placing 𝐾 transmit
and receive nodes uniformly in a circular region with radius
𝑅 (𝑅 = 5m in the simulations). The power at a receive node
from a transmit-node at a distance of 𝑟m from the transmit
node is assumed to be given by �𝑘

�𝛼 , where 𝑝� is assumed to be
the power received from a transmit node at a distance of 1m
and 𝛼 is the path-loss exponent (𝛼 = 3 in the simulations).
All user-nodes are assumed to transmit at the same power-level
of 100mW. The path loss at a distance of 1m is assumed to
be 40dB (therefore 𝑝� = � 50dBw). The received signals are
assumed to be corrupted by additive white Gaussian noise with
� 70dBw power per transmission bandwidth. Note that one
iteration of the algorithm in the simulation results corresponds
to one waveform adaptation by a single user-node unless
indicated otherwise.

Figure 2 and Figure 3 illustrate the convergence of the
SISINR algorithm in different over-loaded network scenarios.
(Note that the figure also includes curves for a greedy game.
These curves will be explained in Section V-D.) It can also
be seen from the latter figure that in an over-loaded scenario,
multiple fixed points can exist for the WA algorithm. This is as
opposed to equally or under-loaded network scenarios where,
as shown in Theorem 2, the algorithm always converges to
an orthogonal sequence configuration (simulation results are
seen to corroborate Theorem 2 but are not included here for the
sake of brevity). Hence, to evaluate the quality of the multiple
fixed points in the over-loaded scenario, we compare them
with solutions numerically obtained by a Lagrangian global
search algorithm described below.
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Fig. 2. Comparison of the SINRs of users for the SISINR WA algorithm and
the greedy IA algorithm. The network has 6 users sharing 3 signal dimensions.
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Fig. 3. Weighted sum-interference-plus-noise function for a SISINR WA
algorithm with 12 user node-pairs sharing 6 dimensions. Plots show conver-
gence from different random initial choice of waveforms to different fixed
points.

The optimization problem to find a sequence set that min-
imizes the sum interference function (4) with constraints on
the power of the sequences can be written as follows:

P1: min


�∑
�=1

𝑠	� 𝑅��,�𝑠�
𝑝�𝑔2��

subject to: 𝑠�� 𝑠� = 1,  𝑘 (11)

This can reformulated as the following Lagrangian function

𝑓� =
�∑

�=1

𝑠	� 𝑅��,�𝑠�
𝑝�𝑔2��

+
�∑

�=1

𝜆�
(
𝑠��𝑠� � 1

)2
. (12)

Here, 𝜆�, 𝑘 � � are the Lagrangian multipliers. A gradient
search algorithm similar to that in [21] can be used to find the
stationary point of the Lagrangian function. The derivative of
𝑓� with respect to 𝜆� and of 𝑓� with respect to 𝑠� for 𝑘 � �
are
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Fig. 4. Plot of the values of the Weighted sum-interference-plus-noise
function at the end of the proposed SISINR WA algorithm divided by the
values of the function that result from the Lagrangian search algorithm over
100 realizations of an overloaded-network with 5 users sharing 4 signal
dimensions. Also plotted are the normalized values of the function for the
random sequences used to initialize the algorithms (normalized by dividing the
values by the values that result at the end of the Lagrangian search algorithm).

𝑑𝑓𝑙

𝑑𝜆𝑘
=
(
𝑠𝑇

𝑘 𝑠𝑘 − 1
)2

and

𝑑𝑓𝐿

𝑑𝑠𝑘
=

2𝑅𝑖𝑖,𝑘𝑠𝑘

𝑝𝑘𝑔2𝑘𝑘

+
𝐾∑

𝑗=1,𝑗 ∕=𝑘

2𝑔2𝑘𝑗𝑝𝑘𝑠𝑗𝑠
𝑡
𝑗𝑠𝑘

𝑝𝑗𝑔2𝑗𝑗

+ 4𝜆𝑘

(
𝑠𝑇

𝑘 𝑠𝑘 − 1
)
𝑠𝑘

(13)

respectively. At each iteration of the algorithm, 𝑠� and 𝜆� for
𝑘 � � are updated as follows:

𝑠� � 𝑠� � 𝜇
𝑑𝑓�
𝑑𝑠�

and 𝜆� � 𝜆� + 𝜇
𝑑𝑓�
𝑑𝜆�

(14)

Here, 𝜇 is a step size for the updates. Figure 4 plots
the normalized value of the sum interference function (4)
for independent instantiations of the network and initial
sequences. (Note that for the Lagrangian search algorithm
only solutions that satisfy the constraints are retained.) It is
seen that the proposed algorithm and the Lagrangian search
algorithm significantly reduce the interference in the network.
In addition, the performance of the proposed algorithm is very
similar to that obtained by the Lagrangian algorithm which
searches across the global sequence space (the solutions are
equivalent in 95% of the runs) indicating that the solutions
obtained from the proposed algorithm are nearly optimal.

The WA algorithm involves considerable network overhead.
Hence, it is important to evaluate the gains provided by the
algorithm over a simple random-access scheme which does
not require any network overhead. This is done by setting
up the following network simulation: We consider a network
with 𝐾 users and 𝑁 dimensions. Transmission time is divided
into time-slots of duration 𝑇 . The probability that a user
has a packet to transmit in a transmission slot (of duration
𝑇 ) is denoted by 𝜆. In the random-access-scheme (similar
to a multi-band ALOHA scheme discussed in the literature
[22]), a user that has a packet to transmit, randomly chooses
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Fig. 5. Throughput comparison with random-access in a distributed network.
The plot is generated by averaging over multiple instantiations of a network.

a dimension from the 𝑁 available transmission dimensions.
(For e.g. if the transmission dimensions are frequency bands,
a band is randomly chosen from the 𝑁 available frequency
bands.) Nodes that transmit on the same dimension interfere
with each other. In the WA scheme, a user that has a packet to
transmit, transmits using its current signature sequence. The
signature sequences of all 𝐾 users are adapted continually
for the first 𝐾 � 10 slots (i.e. the WA algorithm is run for
10 round-robin iterations). A transmission by user is assumed
to be unsuccessful if the SINR at its receiver is less than
0dB. (Note that this is slightly different from ALOHA models
usually used in the literature where a collision or unsuccessful
transmission is assumed if multiple users transmit in the same
dimension.) Retransmissions of unsuccessful packet transmis-
sions are ignored. Throughput results are obtained over 1000
time-slots. Results are then averaged over multiple network
instantiations. Figure 5 plots the results for an equally-loaded
network (with 𝐾 = 5 and 𝑁 = 5) and an over-loaded
network (with 𝐾 = 10 and 𝑁 = 6). It is seen that for small-
transmission probabilities (small values of 𝜆), the performance
of both schemes are similar. (Note that the plots also include a
reduced-feedback WA scheme. This scheme will be discussed
in the next section.) This is due to the fact that for lower
transmission probabilities, the probability of finding an unused
dimension is larger while using the random-access scheme.
However, when the transmission probability increases, the
WA scheme, especially in the equally-loaded scenario, offers
considerable gains over the random-access scheme. Hence WA
schemes are useful in high-traffic networks.

D. Comparison with Greedy WA Game

In this sub-section, we compare the performance of the
proposed SISINR WA algorithm with the performance of a
greedy WA algorithm (similar to algorithms discussed in [7]).
In the greedy IA algorithm, the utility function of each user is
given by the negative of the inverse SINR at its receiver, i.e.,
𝑢�� (𝑠�, 𝑠−�) = � 𝑠	� 𝑅��,�𝑠�. The utility function decreases
with interference power and does not incorporate the effect of
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Fig. 6. Comparison of the weighted sum-interference-plus-noise function for
the SISINR WA algorithm and the greedy IA algorithm in multiple arbitrary
networks. The network has 12 users sharing 6 signal dimensions.

the user’s action on the other users in the network. The best
response of the 𝑘�ℎ user is the minimum eigenvector of 𝑅��,�.
Note again that the greedy algorithm does not converge in all
network scenarios (example scenarios are identified in [8]).

Figure 6 shows the weighted sum-interference-plus-noise
function for the proposed algorithm and the greedy algorithm
over independent instantiations of the network. It is observed
that, in general, the proposed SISINR WA algorithm results in
lower interference in the network as compared to the greedy
IA algorithm. It can also be seen that the greedy IA algorithm
leads to a cyclic allocation of resources in some network
scenarios. Also, since the utility function in the proposed
algorithm takes into account the effect of the particular user’s
actions on the other users in the network, the proposed algo-
rithm is seen to lead to fairer allocation of resources than the
greedy IA algorithm. This is illustrated in Figure 2 which plots
the SINRs of the users in the network for the two adaptation
algorithms. It is seen that the SINRs of the users are more
closely distributed in the case of the proposed algorithm than
the greedy IA algorithm. (Note that a network scenario where
the greedy algorithm converges is chosen for this particular
simulated example.) Also, when averaged over allocations in
different arbitrary network scenarios, the proposed SISINR
algorithm results in a Theil’s entropy measure (an inequality
index where measure 0 indicates equal distribution and higher
values indicate indicate more unequal distribution of resources
[23]) of 1.3998 while the greedy IA algorithm results in a
measure of 2.9691.

E. Comparison with Waterfilling Algorithms

In this subsection, we compare solutions obtained from the
proposed SISINR best-response algorithm with those obtained
from greedy waterfilling algorithms discussed in [7] and [24].
As in [25] and [24], we consider a representative system with
two transmitters and two receivers (𝐾 = 2). Also similar to the
system considered in [7], to enable each transmit-receive pair
to waterfill the available signal dimensions (𝑁 ), 𝑁 sequences
are associated with each transmit-receive pair. (Note that the



MENON et al.: INTERFERENCE AVOIDANCE IN NETWORKS WITH DISTRIBUTED RECEIVERS 3085

system is now always an overloaded system since the total
number of sequences in the system, 2𝑁 , is greater than 𝑁 .)
Let the sequences associated with transmitter-𝑘 (𝑘 � � 1, 2� )
be denoted by 𝑠��,𝑚 = 1, . . . , 𝑁 . Let the interference-plus-
noise cross-correlation matrix for sequence-𝑚 of user-𝑘 be
denoted by 𝑅�

��,�. The matrix can be specified as

𝑅�
��,� =

�∑
�=1,� ∕=�

𝑠�� 𝑠
�
�

�
𝑝�𝑔

2
�� +

�∑
�=1

𝑠��𝑠
�
�

�
𝑝�𝑔

2
��. (15)

Here, 𝑙 � � 1, 2� such that 𝑙 �= 𝑘. The greedy waterfilling
algorithm [7] is an extension of the greedy WA algorithm
discussed in Section V-D and is as follows:

Best-response-based SISINR WA Algorithm
1) Initialize codewords for each user.
2) For each codeword of user-1, 𝑠1�,𝑚 = 1, . . . , 𝑁 , replace

𝑠1� with minimum eigenvector of 𝑅1
��,�

3) Repeat step 2 until a fixed point or some termination
criteria is reached

4) For each codeword of user-2, 𝑠2�,𝑚 = 1, . . . , 𝑁 , replace
𝑠2� with minimum eigenvector of 𝑅2

��,�

5) Repeat step 4 until a fixed point or some termination
criteria is reached

6) Repeat steps 2-5 until a fixed point or some termination
criteria is reached

In the algorithm, greedy IA (steps 2-3 for user-1 and steps 4-
5 for user-2) is sequentially applied at each user considering
the other user’s interference as Gaussian noise. Greedy IA at
a user’s receiver while the interference from the other user is
fixed, is guaranteed to converge to a solution that waterfills
over the spectrum of its interference-plus-noise covariance
matrix [7] [26].

Note that in the greedy waterfilling algorithm discussed
above, each sequence only adapts to the interference at its
receiver. Our proposed algorithm, on the other hand, also
adapts to the interference caused by it to other waveforms
(sequences) in the system. Hence, in our algorithm in step 2
and 4, 𝑠1� and 𝑠2� are replaced by the minimum eigenvector
of 𝑋1

� and 𝑋2
� respectively, where,

𝑋�
� =

𝑅�
��,�

𝑝�𝑔2��
+

�∑
�=1,� ∕=�

𝑠�� 𝑠
�
�
�
𝑝�𝑔

2
��

𝑝�𝑔2��
+

�∑
�=1

𝑠��𝑠
�
�
�
𝑝�𝑔

2
��

𝑝�𝑔2��

= 2

�∑
�=1,� ∕=�

𝑠�� 𝑠
�
�
�
𝑝�𝑔

2
��

𝑝�𝑔2��
+

�∑
�=1

𝑠��𝑠
�
�

�
(
𝑝�𝑔

2
��

𝑝�𝑔2��
+

𝑝�𝑔
2
��

𝑝�𝑔2��

)
.

(16)

Here, 𝑘 � � 1, 2� and 𝑙 � � 1, 2� such that 𝑙 �= 𝑘. For ease
of analysis, we consider the case where, 𝑝1 = 𝑝2 and 𝑔11 =
𝑔22 (transmitters have equal power and are equi-distant from
their respective receivers). It can be seen that our proposed
algorithm would be similar to performing greedy waterfilling
in a system where the gain from transmitter-1 to receiver-2
and the gain from transmitter-2 to receiver-1 are both given
by

𝑔∗12 = 𝑔∗21 =

√
𝑔212 + 𝑔221

2
(17)
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Fig. 7. Comparison of feasible rate regions of the proposed SISNR algorithm
and the greedy waterfilling algorithm. The feasible rate region of the greedy
waterfilling algorithm is restricted to the FS NE point on the figure. The
remaining points (including the FS NE) correspond to the feasible rate region
of our proposed algorithm. 𝑔11 = 𝑔22 = 1, 𝑔12 =

√
10, 𝑔21 =

√
0.09,

𝑃1 = 𝑃2 = 10 and 𝑁0 = 0.01.

Simultaneous waterfilling regions as a function of channel
gains (𝑔12 and 𝑔21) are identified in [25]. By substituting 𝑔∗12
and 𝑔∗21 for 𝑔12 and 𝑔21 respectively, the framework in [25] can
be used to find the rate regions for our proposed algorithm.
These resultant rate regions are discussed below.
Scenario-1: 𝑔12 = 𝑔21

In this scenario, 𝑔∗12 = 𝑔∗21 = 𝑔12 = 𝑔21 and our
proposed algorithm performs similar to the greedy waterfilling
algorithm.
Scenario-2: 𝑔21 �= 𝑔21

We first consider the scenario where 𝑔212𝑔
2
21 < 1. In this

scenario, it is shown in [25] that only a unique NE, where
both users spread over all available dimensions, exists for
the simultaneous waterfilling game. This referred to as the
full-spread (FS) NE [24]. It is shown that the FS NE is
not desirable in general since separating users in different
solutions leads to more efficient solutions (with respect to the
sum of the rates achievable by users in the network). With our
proposed algorithm, the equivalent channel gains are given by
Equation (17). Hence in a large number of network scenarios,
where the greedy algorithm is restricted to the inefficient
FS NE, our algorithm results in a larger and more desirable
rate region. This is illustrated in Figure 7 which shows the
rate region where 𝑔212 = 10 and 𝑔221 = 0.09 (resulting in
𝑔212𝑔

2
21 = 0.9 < 1).

In other network scenarios, it is that in general the rate
region achievable with the proposed algorithm is larger and
more balanced (potentially leading to a fairer allocation of
resources) than that achievable by the greedy waterfilling
algorithm (similar results are also indicated in Section V-D).
This is illustrated in Figure 8 which shows the rate region
where 𝑔212 = 100 and 𝑔221 = 1.

In theorem-6 of [24], it is shown that the rate region
achievable by non-cooperating (self-interested) users is given
by rate vectors that are component-wise larger or equal to
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with respect to sequence 𝑠� is given by

𝑑� (𝑠�, 𝑠−�) =
𝑑𝑢� (𝑠�, 𝑠−�)

𝑑𝑠�

=
2
(
𝑠�� 𝑠�

)
𝑅��,�𝑠� � 2

(
𝑠��𝑅��,�𝑠�

)
𝑠�(

𝑠�� 𝑠�
)2 .

(18)

Note that the signature sequence 𝑠� is usually known at the
receiver corresponding to user 𝑘. Also, the interference-plus-
noise cross-correlation matrix, 𝑅��,� , can be expressed as
𝑅��,� = 𝐸

[
𝑟�𝑟

	
�

]
� 𝑝�𝑔��𝑠�𝑠

	
� , assuming bit transmissions

from multiple users are uncorrelated. Hence 𝑅��,� , and con-
sequently, 𝑑� (𝑠�, 𝑠−�), can be estimated by computing and
averaging the received correlation matrix (assuming no other
user adapts during measurement) with no additional overhead
in the network.

In this reduced feedback scheme, the 𝑘�ℎ receive-node finds
𝑞 (𝑞 � � 1, . . . , 𝑁 � ) dimensions in which vector 𝑑� (𝑠�, 𝑠−�)
has the largest magnitude. The variable 𝑞 can be used to
control the amount of feedback from the receive-node to
the transmit-node. The receive-node then finds the step size
𝜆 that maximizes 𝐼� (𝑠�, 𝑠−�) in the direction specified by
the 𝑞 chosen dimensions with the largest magnitude (referred
to here as the ascent direction and denoted by 𝑎�). For
example, if the 𝑑� (𝑠�, 𝑠−�) is a 4-dimensional vector given
by 𝑑� = [1 � 3 4 2]� and 𝑞 = 2, the receive-node finds the
optimum step size along the ascent direction 𝑎� = [0 � 3 4 0]� .
The optimum step-size 𝜖� along 𝑎� is the solution to the
following optimization problem and can be solved using a
simple line search procedure:

max
�∕=0

�
(𝑠� � 𝜆𝑎�)

�
𝑅��,�(𝑠� � 𝜆𝑎�)

(𝑠� � 𝜆𝑎�)
�
(𝑠� � 𝜆𝑎�)

. (19)

The transmit-sequence of the user is then adapted along this
direction if interference in the network is decreased. This
ensures that each adaptation reduces the potential function
(Equation (5)). The proposed algorithm can be formally stated
as follows:

Gradient-based Better Response SISINR Waveform
Adaptation Algorithm

1) Fix the transmit-power levels and initialize codeword 𝑠�
for each user. Also choose a value for variable 𝑞 .

2) For each 𝑘 � �
a) Set count 𝑖 = 0.
b) Calculate gradient 𝑑� (𝑠�, 𝑠−�), corresponding as-

cent direction 𝑎� and the optimum step-size 𝜖�
along 𝑎� at receive-node 𝑘.

c) Feedback 𝑎� and 𝜖� to the transmit-node 𝑘.
d) Adapt transmit-node 𝑘 to sequence 𝑠� =

𝑘+�𝑘�𝑞�
(𝑘+�𝑘�𝑞)

𝐻(𝑘+�𝑘�𝑞)

e) All receivers in the network that are in transmit-
node-k’s transmission range, send change in ISINR
at the receive-node due to sequence adaptation by
transmit-node 𝑘.

f) If the sum change in ISINR is positive, set 𝑠� = 𝑠�.
Else set 𝑖 = 𝑖+1. If 𝑖 � 𝑇 (some positive number),
set 𝜖� = 0.5𝜖� and repeat steps 2.b to 2.f.

3) Repeat step 2 until a fixed point is reached.

Descent-based schemes, similar to the algorithm proposed
here, where sequences are adapted along the direction of the
negative gradient (gradient-descent) or minimum eigenvector
(lagged-IA) of the interference-plus-noise cross correlation
matrix have been investigated for centralized networks in [16]
and [12]. However, these schemes do not incorporate the effect
of a user’s adaptation on other users in the network and hence
are not guaranteed to converge when directly extended to
distributed networks.

The implementation of the proposed algorithm only requires
feedback of a 𝑞 + 1-dimensional (𝑞 < 𝑁 ) vector from the
receive-node corresponding to an adapting transmit-node and
negligible feedback from the other nodes in the network. The
proposed scheme thus substantially decreases the overhead
in the network compared to the best-response iteration based
SISINR WA algorithm.

Convergence and Fixed Points: As mentioned before, a
potential game with a better response dynamic converges
and hence the gradient-based better response SISINR WA
algorithm also converges. However, the set of fixed points of
the algorithm might be larger than the set of NE. This due to
the fact that the gradient (18) is zero for all eigenvectors (not
just for the minimum eigenvector) and the fact the gradient
of only a part the utility function of a user is taken into
consideration for the WA process. Hence the adaptations can
get stuck at sub-optimal points. Convergence to the NE can be
forced by using a random better response spacer step (wherein
each user randomly chooses a sequence that improves its
utility function). In the under-loaded or equally-loaded net-
work scenario with white-noise, the optimal configuration
is to assign orthogonal signature sequences to each user.
Hence, the random better response spacer step can be used
whenever a receive-node notices that after the convergence of
the WA algorithm, the signature sequence of its corresponding
transmit-node is not orthogonal to the interference sub-space
at the receive-node. In the over-loaded scenario, the random-
better response step can be added at regular pre-determined
intervals. Since NE are the only fixed points of a random better
response, the gradient-based algorithm with the spacer steps
also theoretically converges to a NE.

C. Simulation-based Performance Evaluation

Figure 9 shows the performance of the random better
response and the gradient-based better response algorithms
(without the random spacer step) in an over-loaded network
(with 𝐾 = 10 and 𝑁 = 6). Multiple runs of the better
response algorithms from different initial sequences are illus-
trated in the plot. It is seen that both algorithms substantially
reduces the interference in the network. However, as men-
tioned before, the random better response algorithm converges
very slowly. It can be observed that the random better response
scheme has not yet converged in 30 round-robin iterations. The
gradient-based better response schemes, on the other hand,
converge in around 20 round-robin iterations. Note that the
gradient-based schemes converge to suboptimal fixed points.
However, as mentioned before, a random spacer step can be
used to force convergence to the NE.

The figure also illustrates the convergence of the gradient-
based algorithm for two different values of 𝑞. It is seen


