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Efficient Signal Proportional Allocation (ESPA)
Mechanisms: Decentralized Social Welfare

Maximization for Divisible Resources
Rajiv Maheswaran and Tamer Başar, Fellow, IEEE

Abstract—We address the problem of devising efficient decen-
tralized allocation mechanisms for a divisible resource, which is
critical to many technological domains such as traffic management
on the Internet and bandwidth allocation to agents in ad hoc wire-
less networks. We introduce a class of efficient signal proportional
allocation (ESPA) mechanisms that yields an allocation which max-
imizes social welfare with minimal signaling and computational
requirements for the resource. Revenue limits for this class are
obtained and a sequence of schemes that approach these limits
arbitrarily closely are given. We also present a locally stable negoti-
ation scheme applicable to the entire class and illustrate efficiency
and revenue properties through simulation.

Index Terms—Communication system economics, game theory,
mechanism design.

I. INTRODUCTION

THE FOUNDATIONS and future of information tech-
nology, and communication networks in particular, are

large syntheses of independent components which require
decentralized control, as the scale of these systems and hetero-
geneous ownership prevent timely or imposable centralization,
respectively. Consequently, clients desiring access to these
resources must use local information to negotiate for service,
often via electronic proxies. The quality-of-service (QoS)
received by end users depends critically on the actions of
the population of clients (or their proxies) simultaneously re-
questing a portion of a common scarce resource. While current
protocols [such as transmission control protocol (TCP) [1]] are
not tailored to a user’s specific need, the emergence of voice,
video, and peer-to-peer applications portends an evolution
toward more intelligent proxies (or agents) that capture user or
application preferences more explicitly and adapt their actions
to fulfill their needs more closely. This interplay between
“selfish” agents competing for a common good has invited
game-theoretic and economic principles as prevalent tools for
analysis and design of network resource allocation.
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The key components of most communication networks
(bandwidth on an Internet or satellite link, buffer space)
along with other vital components of information technology
(processor share, memory space) can be characterized as an
arbitrarily divisible resource due to the magnitude of their
capacity and the flexibility with which they can be partitioned.
Classical economic literature with respect to mechanisms
for allocating divisible resources is sparse and often inap-
plicable to technological domains where signaling size and
computation to calculate an allocation are significant design
metrics. Wilson’s share auctions [2], and the Generalized
Vickrey Auction (GVA) [3] which is an instantiation of a
Vickrey–Clarke–Groves (VCG) mechanism [4]–[6], require
agents to submit a signal characterizing their entire valuation
structure which in this case is infinite dimensional. Even
partitioning the resource into reasonable bundle sizes would
lead to a vast combinatorial space for which the solution is
NP-complete [7]. More recently, Mackie–Mason and Varian
introduced the notion of “smart markets” for Internet pricing,
where packets would carry bids which determine their level of
service [8]. Even though their model could lead to the resource
being utilized at less than full capacity and requires a computa-
tion of a sort to order bids, the notion of applying market-based
control to communication networks persisted and proliferated.
Semret and Lazar proposed the progressive second price (PSP)
auction [9], an extension of the Vickrey auction, which required
two-dimensional signaling and computation at the
resource to calculate the allocation, where is the number of
competing agents. While PSP has near-optimal efficiency and
desirable revelation properties, in implementation, the auction
is indeterminate for five minutes before closing, and that is not
on a time-scale which is functional for many highly dynamic
environments.

In most current work, network resource allocation is based
on a proportionally fair (PF) pricing mechanism by Kelly et al.
[10]. However, when agents incorporate the relationship of the
price to the bids into their strategies (turning the mechanism into
an auction), the efficiency of the pricing mechanism (with re-
spect to social welfare maximization) is undermined. This loss
of efficiency has been studied under cooperative [11] and com-
petitive [12] formulations. Johari and Tsitsiklis [12] show that
the worst case performance of the PF auction is no worse than
75% of optimal. Sanghavi and Hajek [13] have suggested a
mechanism that improves this to 87.5% for a two-user case and
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conjecture that the efficiency degrades slightly as the number of
users increase.

In this paper, we investigate mechanisms with single-dimen-
sional signaling and cost of computation for finding an
allocation for signals, as it is the minimal levels of each for
arbitrary partitioning a divisible resource. We show that the PF
auction, while optimal in an initial expansion where costs are
known a priori and the allocation scheme is signal proportional,
is in general never efficient. Our main contribution is obtaining
an infinite subclass of efficient signal proportional allocation
(ESPA) mechanisms that always maximize social welfare for
an arbitrary collection of agents with quasi-linear utilities. Thus,
ESPA mechanisms are the optimal tools for allocating divisible
network resources when efficiency (social welfare for strategic
agents), computational cost, and signaling space are the met-
rics of interest. Given this infinite set of mechanisms, we can
optimize over a secondary metric, such as revenue generation,
while maintaining efficiency. We obtain revenue limits for the
ESPA class and discuss how one can approach these revenue
limits to arbitrary precision. A locally stable decentralized nego-
tiation protocol and simulations that illustrate the effectiveness
of ESPA and various revenue generation properties are also pre-
sented. This paper is based and developed on work presented in
[14]. The proofs of selected propositions in the exposition are
omitted here and the reader is referred to [14].

II. MODELS AND EQUILIBRIUM

Transparent mechanisms (or auctions) are characterized by an
allocation rule and a cost rule , where
represents the signals from a population of agents and
and are, respectively, the allocation and cost to the th
agent. We work in the one-dimensional signaling space, where

and . One subset of this space of auctions is the
collection of those that can be characterized by the following
allocation rule:

where is a parameter controlled by the resource (e.g., the re-
source’s signal). Signals are translated to weights, denoted by
the functions , which determine the proportions of
the allocation. Allocation rules of this form fit nicely with Gen-
eralized Processor Sharing models for flow control in networks
[15]. We begin our analysis with the case for which

and . These restrictions incorporate the no-
tion of fairness where each agent is given the same weight and
pays the same cost as any other agent who makes the same
signal. It also removes the coupling of the signals away from
the weight and cost functions and isolates the interaction in the
allocation rule. We assume that the weights and costs are strictly
increasing functions of their arguments. We also assume that a
signal of zero will yield a weight and cost of zero as well. We

consider this class of rules to be a reasonable and tractable ini-
tial expansion around the proportionally fair (PF) auction which
is the “point” in mechanism space characterized by
and . It can be shown that we do not need to express
both and . By making the substitutions
and ( is invertible if it is monotonically
increasing), we can express this class of mechanisms with the
rules

With similar substitutions, we can equivalently express this class
with the rules

(1)

We choose to work with the characterization described in (1),
where is a twice differentiable increasing function
of . We denote a mechanism where is as in (1) and
is such that the costs can be computed in cycles as a
signal proportional allocation (SPA) mechanism. SPA mecha-
nisms have the minimal signaling and computational costs for
allocation determination that we desire in many communication
network contexts.

We model the agents with quasi-linear utility functions

where is a twice differentiable concave increasing function
( , ). We have the derivatives

and

where

If , then we have . The strict concavity of
the th agent’s utility implies that it will have a unique optimal
response to each opponent state . For the optimal response
to be nonzero, we need the marginal utility when bidding zero
to be positive. This occurs when

The th agent’s response can then be determined from

(2)

which yields the unique optimal when facing .
Let us define . Then, serves as a measure

of demand for the resource and allows us to characterize agents’
optimal responses with respect to a parameter which is identical
for all agents at equilibrium. Let us call this characterization a
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demand function , which captures an agent’s allocation as a
function of when it uses the strategy obtained from (2). Thus,
the demand function captures that is the optimal
response to . We now investigate the
effects if . The following result, whose proof can be
found in [14] captures this.

Proposition 1: If the cost function is concave, then there ex-
ists a valuation function for which the optimal response is not
unique.

Thus, we restrict our analysis to allocation mechanisms de-
scribed by (1), where the cost function is convex. We de-
note this class of mechanisms by . The intuition behind convex
cost functions is that agents who receive larger allocations (due
to greater signals) pay a higher cost per unit resource obtained.
These occur for strictly convex cost functions and are classified
as discriminatory price auctions. Mechanisms in with linear
cost functions such as the proportionally fair auction are uniform
price auctions. For games played by agents attempting to gain
access using a resource allocated through a mechanism from ,
it is important to know whether we can obtain a unique oper-
ating point, i.e., a unique Nash equilibrium.

Proposition 2: For every mechanism in , there is a unique
Nash equilibrium.

Proof: Making the substitutions and
into (2), we can express the first-order necessary

condition for the optimal response as

(3)

Every pair that satisfies the previous equation represents
an optimal state for the th agent. We can interpret these states
as demand functions (where is a function of ). By treating
the previous equation as an identity, we obtain

which implies

Because for all mechanisms in , and the valuations
are increasing concave functions, we have that .
This implies that the demand functions which char-
acterize the optimal responses of agents are decreasing, where

is obtained from the unique value of which
solves (3) for a particular . We note that . Fol-
lowing the reasoning in [16], since all agents are character-
ized by decreasing demand functions, the total demand will
be a decreasing function. The Nash equilibrium point is de-
fined by total demand being one which occurs at only one value
of . Thus, there is a unique Nash equilibrium with signals

.
Given that we have a class of auctions that yield the desir-

able property of a unique Nash equilibrium, a natural question
is how we go about choosing a mechanism within . In the next
sections, we consider this question with social welfare maxi-
mization as a metric.

III. EFFICIENCY IN

A common performance measure of a mechanism (especially
in distributed settings) is the efficiency it induces. Whether al-
locating bandwidth or buffer space, it is desirable to have the
resource partitioned in a way that yields the greatest benefit to
those accessing it. In economic terms, efficiency is also referred
to as the social welfare of those participating in the allocation
process. Social welfare is the sum of the valuations of alloca-
tions to all agents receiving service, i.e., , where

are increasing concave functions. Social welfare
can also be thought of as the sum of the utilities of all agents,
where the resource is a player with utility

. Given a scarce resource, the optimal allocations are
obtained from the solution of the optimization problem

which can be found by maximizing the Lagrangian

This is a classical optimization problem whose solution is dis-
cussed in [17]. Essentially, an optimal solution is an allocation
of the entire available resource where the marginal valuations
for agents with positive allocations are all equal. The value of the
identical marginal valuations is the Lagrange multiplier. Agents
that do not receive positive allocations are those whose highest
marginal valuations are less than the value of the Lagrange mul-
tiplier. Mathematically, the optimal allocations are character-
ized as follows:

where is chosen such that

where is the inverse of the th agent’s valuation func-
tion. The intuition behind the solution is as follows. Given an
allocation, if one agent (say the th agent) has a higher marginal
valuation than another (say the th agent), the social welfare
can be improved by marginally increasing and marginally
decreasing . Thus, in an optimal allocation, all active agents
should have identical marginal valuations. We refer to a mech-
anism that yields an allocation that maximizes social welfare
for all collections of agents characterized by valuation functions

(with as defined earlier) as efficient.
We now investigate the efficiency of SPA mechanisms. We

begin with the class of mechanisms in and argue that while
linear cost functions outperform strictly convex cost functions
with respect to social welfare, they are not efficient. We then
expand our rule space beyond to devise efficient SPA mecha-
nisms. We also assume that (i.e., the entire resource is al-
located) for mathematical and notational simplicity. Extensions
to the case where are straightforward.

Proposition 3: Within the class of mechanisms in , social
welfare is maximized when the cost functions are linear.
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Fig. 1. Illustration of ~f and f along with marginal valuations for four agents.

Proof: The allocation for the th agent is determined by

We have for all cost functions in , which implies that
if for all . If ,

then the th agent will not receive a positive allocation at . Oth-
erwise, the th agent will receive a unique positive allocation

which is the solution of . The unique-
ness is because is a decreasing function of and is a strictly
increasing function of . We also have if

for all . This implies that if
. Given any cost function , we can find the equilib-

rium by solving , from which we can obtain the
equilibrium allocations .

For a linear cost function , we have
. We note that every linear cost function yields the

same allocations to participating agents, though the equilibrium
might differ. Let us assume that for , the equi-

librium is at . Then, if , satisfies
all the conditions for equilibrium with the same allocations as
the case with . Alternatively, we can let ,
and obtain from the equations

. The equilibrium allocations for all linear cost functions
can be expressed in terms of , which is the solution

to .
Let us now consider a strictly convex cost function . Let

us assume that for some and , we have

Because , we have

and , we have

What we have shown is that if
(obtained from a strictly convex function) intersects at
some point , then will be larger than for and
will be less than for .

Let us now assume that we have an arbitrary heterogeneous
agent population. Let be obtained from the solution of

and be obtained from the solution of
. Let be

the smallest positive allocation and be the
largest allocation under a linear cost function. Since we are com-
paring the performance over all agent populations, we consider
one for which . If is where

then for all , and
. Similarly, if is where

then for all , and
.

This implies that the for which must lie
strictly between and . Furthermore, intersects

at a point . For

For

If is the difference in social welfare between the allo-
cations for a linear cost function and the allocations for a
strictly convex cost function , we have

If and ,
then
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Since the sums of allocations in both cases are one, we have

Incorporating this into the bound on social welfare difference,
we have

The proof (shown first in [14]) exploits the properties of (3)
under the different cost structures. The optimality of linear cost
functions (including the PF auction) among mechanisms in
in addition to their practical benefits (ease of implementation,
etc.) gives credence to their use. However, we still are unable to
induce efficiency by limiting ourselves to this class of allocation
and cost rules.

Corollary 1: There is no mechanism in which maximizes
social welfare for all agent populations.

Proof: We consider the case of two agents with valuation
functions such that for all . We con-
sider a mechanism with a linear cost function as it yields the
optimal efficiency among all cost functions in . The allocation
for Agent 1 is obtained from the solution to
for some . This implies that , which in turns im-
plies that . Since both agents are active, their marginal
valuation functions must intersect , which is an in-
creasing function of . This implies that the agents’ marginal
valuations are not equal at equilibrium unless ,
and that cannot occur because . Since both
agents are active and their marginal valuations are not equal, the
social welfare can be improved and thus the mechanism is not
efficient.

IV. DESIGNING EFFICIENT AUCTIONS

The intuition behind why mechanisms in cannot be efficient
lies in the equilibrium condition

. Here, plays the role of the Lagrange multiplier.
For cost functions that are convex, is an increasing func-
tion of , which yields unequal marginal valuations at equilib-
rium. For optimality we need a cost function that would yield a
function which induces identical marginal valuations at
equilibrium, i.e., which is independent of . This would
make “flat” across and the mar-
ginal valuation functions of all active agents would intersect

at the same value. We refer to as the generator func-
tion. The generator function serves the purpose of the Lagrange
multiplier in the social welfare maximization problem. Thus, if

we are to use this generator function to obtain a maximum effi-
ciency cost function for all agent populations, it must be able to
span all viable values that a Lagrange multiplier might take, i.e.,
all nonnegative real numbers. Furthermore, we need the gen-
erator function to be one-to-one. Otherwise, an agent popula-
tion whose optimal allocations occur at a particular Lagrange
multiplier value could be reached at two different values of ,
which indicates multiple equilibria. We now show that by using
an appropriate generator function, we can construct cost func-
tions that induce an equilibrium at which active agents have the
same marginal valuation for their allocations.

Proposition 4: Let be a one-to-one function whose
range space is the set of all nonnegative real numbers. Consider
the mechanism

where . For an arbitrary agent popula-
tion with quasi-linear utilities and concave increasing valua-
tions, any equilibrium under this mechanism will yield a solu-
tion where all active agents have the same marginal valuation.

Proof: First, we explain the construction of the cost func-
tion. If we set the marginal valuation to be equivalent to the gen-
erator function, we have

At equilibrium, we have , , and
. We realize that we cannot express the marginal cost solely

as a function of . However, we can express it as a function of
and as follows:

(4)

Given that this expression for marginal cost holds for all equi-
librium solutions, we can integrate over to obtain

(5)

We now verify that this yields equal marginal valuations at
equilibrium for active agents by analyzing agents’ optimal
responses. If an agent with utility
has a positive allocation at equilibrium, its optimal signal is an
extremal point obtained as a solution of

Substituting the marginal cost

Thus, the marginal valuations of active agents for any set of bids
that form an equilibrium solution are identical. In fact, the value
of the marginal valuations is the output of the generator function
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at the equilibrium value of . Furthermore, for any inactive agent
at equilibrium, we have

which meets our conditions for a solution to the social welfare
maximization problem.

We note that the key to these mechanisms is the factor in
the cost functions as it cancels the that appears when we take
the partial derivative of with respect to . In essence,
by making agents account for increased demand in their costs
as well as the allocation, we are able to achieve maximum effi-
ciency. Table I displays cost functions associated with various
generator functions.

We see that we can generate a diverse set of cost functions that
yield equal marginal valuations at equilibrium. All cost func-
tions yield a cost of zero if the agent bids zero. The cost function
with the simplest and most intuitive form may be that generated
by , which yields . This states that an
agent’s cost depends linearly on both its own signal and the sum
of signals of all other agents.

To this point, we have neglected to analyze the effect of the
cost function on equilibrium. We know that if an equilibrium
exists, it will maximize social welfare. The question that follows
is what generator functions yield cost functions that lead to the
existence of a unique equilibrium.

Proposition 5: Let be a one-to-one function whose
range space is the set of all nonnegative real numbers. Further-
more, let exist and be positive for all . Then, the
mechanism using the cost function generated by yields a
unique equilibrium.

Proof: We show this by obtaining demand functions and
showing that they are decreasing functions of . We already
know that at equilibrium. Taking this as an iden-
tity, we have

for all concave valuation functions. Since the demand functions
are decreasing, we can apply similar reasoning from Proposition
2 to state that we have a unique Nash equilibrium.

We refer to the class of auctions created from the generator
functions as described in Proposition 4 as ESPA mechanisms.
To obtain a unique Nash equilibrium, we must limit ourselves
to strictly increasing generator functions. The functions listed
in Table I all satisfy this requirement. If we generated a cost
function using with , the resulting demand
functions would not decrease and no equilibrium solution would
exist. The set of strictly increasing functions is an infinite set
from which we can obtain generator functions. Thus, we can
obtain an infinite number of efficient mechanisms.

V. REVENUE GENERATION

Given that we have an infinite number of mechanisms that
maximize social welfare, we can optimize a secondary metric

TABLE I
COST RULES FOR GIVEN GENERATORS

TABLE II
SHARE COSTS FOR GIVEN GENERATORS

over this class. A natural choice would be the revenue generated
from the allocation. Given a collection of agents characterized
by their valuation functions, , we know
and from the solution of the problem (described ear-
lier), where

Here, is the optimal value of the Lagrange multiplier when

When using an efficient allocation mechanism, an agent char-
acterized by the valuation function will receive an allo-
cation at equilibrium. Also, since the marginal valuations of
active agents at equilibrium will be equal to the Lagrange mul-
tiplier, we have , where is a constant
scale factor and has the properties of an ESPA generator
function.

Corollary 2: The cost paid by an agent receiving a proportion
of a divisible resource in a collection of agents, where the

Lagrange multiplier for an efficient allocation is , is

(6)

Proof: Dropping the superscript and making the substi-
tutions , , and into (5),
we obtain (6).

Table II displays the costs paid by an agent under cost rules
from various generator functions expressed as a function of
share received and marginal valuation at equilibrium. We note
that the costs are independent of the scale factor . We now
investigate the upper limit on the revenue that can be generated
by an ESPA mechanism.

Proposition 6: Given a collection of agents , an ESPA
mechanism cannot generate revenue at equilibrium which is
greater than .
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Proof: The notation denotes that the Lagrange mul-
tiplier of the social welfare maximization problem depends on
the collection of agents. Let us assume that for some collection
of agents characterized by the valuation set ,
the revenue generated by an ESPA mechanism is greater than

. This implies that such that
, for some . Let

be another collection of agents identical to except for the th
agent who is now characterized by a valuation function, where

with and . Because
, all ESPA mechanisms would yield

the same allocations, , equilibrium signals and costs for
both collections. However, in , we have

for sufficiently small. This implies that the th player has a
negative utility at the efficient equilibrium point, and thus will
not to participate at that allocation. This further implies that if
an ESPA mechanism generates revenue greater that , there
is an agent collection for which it does not induce an efficient
allocation, and hence is not an ESPA mechanism. Thus, ESPA
mechanisms cannot generate revenue greater than .

We now investigate how close we can reach this limit. We
introduce the notion of an extremal optimal allocation as one
where a single agent obtains access to the entire resource. This
would occur when .

Proposition 7: For agent collections with nonextremal op-
timal allocations, we can generate revenue arbitrarily close to

by using the ESPA mechanism associated with the generator
function with sufficiently large.

Proof: From the last row of Table II, we have that each
agent with a positive allocation pays a cost

Taking the limit of as , we have

Thus, for any , we can find a such that
. Using the ESPA mechanism associated with
, the revenue generated will be

We note that calculating a priori to guarantee revenue with
a certain proximity to would require some knowledge of
the minimum positive allocation that might result for expected
populations of agents. As we will see later, there can be un-
desirable effects of using an ESPA mechanism generated from

with very large, which will temper the tempta-
tion to extract revenue very tightly. We also note that revenue
generation for agent collections with extremal optimal alloca-
tions can at first inspection cause some difficulties, namely be-
cause the winning agent’s signal cost becomes zero. This can
be countered with the resource sending a fixed signal which
is also useful for countering collusion [17]. As extremal allo-
cations are rare in most communication network contexts, we
leave this discussion for another forum.

VI. NEGOTIATION

In settings with distributed control, it is unlikely for agents to
reach an equilibrium state after one round of signaling. Hence,
we require a protocol for negotiating or discovering a stable op-
erating point, typically based on some network feedback. For
ESPA mechanisms, returning the value of is a single-dimen-
sional parameter that naturally serves this purpose as it repre-
sents a measure of aggregate demand. We propose the following
relaxed update scheme for negotiation where the superscript in-
dicates the round and is the relaxation parameter:

Intuitively, an agent approaches the signal for which it would
accept the current allocation. Here, is the inverse of the
demand function described earlier and it represents an
agent’s optimal response as a mapping that gives the value of

at which the th agent would demand a share of the re-
source. Obtaining this function is not trivial for an arbitrary
mechanism, but for an ESPA mechanism, we know that the mar-
ginal valuation for any active agent at an equilibrium alloca-
tion is captured by the generator function, i.e., .
This relationship was determined from a relation representing
an agent’s optimal response, thus treating this as an identity, we
have . The local evolution of the system of
agents employing negotiation strategies described in Section VI
can be expressed as

where

is the Jacobian for which is a diagonal matrix of the relax-
ation parameters , , where is a column vector
of optimal resource shares, is a length- column vector of
ones, and is a diagonal matrix with the th diagonal element

Proposition 8: If where
, the relaxed update scheme described in

Section VI is locally stable.
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Proof: The proof is analogous to that presented in [16] for
a stable negotiation protocol for a PF auction, where the func-
tions are obtained by applying the inverse of the gen-
erator function to the marginal valuation function as described
above.

Proposition 8 leads to an interesting insight regarding the
ESPA mechanisms that approach the revenue limits. We can
show that for the class of revenue maximizing generator
functions where for , we have

, where .
As we increase , presumably to approach the rev-
enue limits, we have which implies the value of the
relaxation parameter necessary to guarantee local stability
approaches zero, which indicates a slower convergence to equi-
librium. Thus, there seems to exist a tradeoff between revenue
and rate of convergence.

VII. SIMULATION

We now illustrate the efficiency, revenue, and conver-
gence properties of the ESPA mechanisms through simulation
using the decentralized relaxed update scheme described in
Section VI. We consider a collection of agents which are
characterized by valuation functions of the following form:

. Given any such collection,
we can find the Lagrange multiplier to the social welfare
maximization problem as follows:

From this we can obtain the optimal allocations (
if and , otherwise), which then yields

the value of social welfare for an efficient allocation mechanism:
. For any given agent collection, we

can apply the relaxed update scheme (with some random initial
signals) which we know will converge with a sufficiently small
relaxation parameter (we never encountered a case over hun-
dreds of tests where the local condition was met but the global
system did not converge, though proof of global stability is an
open question). By comparing the resulting allocations at equi-
librium and the sum of their valuations to the optimal values
derived theoretically, we could verify if the ESPA mechanisms
indeed were efficient. Agent populations varied from 10 to 100,
and the valuation functions were chosen such that and

with uniform probability ( is a factor which
can be used to determine what percentage of agents had positive
allocations at equilibrium). We tested the ESPA mechanisms for
which in addition to
the PF mechanism. As expected, all ESPA mechanisms yielded
an efficient allocation for every test run, while the PF mecha-
nism never did (though it did typically yield allocations with
greater than 90% efficiency). Sample evolutions for a collection
of 10 and 100 agents are displayed in Fig. 2(a) and (b).

Fig. 2. (a) Ten agent negotiation. (b) 100 agent negotiation. (c) Mean and
standard deviation of revenue generated for 100 runs of various mechanisms.

To illustrate the revenue limits, we obtained the equilibrium
signal values, computed the corresponding costs which were
then divided by for that particular collection so that we could
aggregate data over various collections. For each mechanism de-
scribed above, we ran 100 scenarios with 10 agents. The means
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Fig. 3. Sample evolution of ESPA-p for k = 2, 100, 200 with � that
guarantees local stability.

and standard deviations of the revenue generated at equilib-
rium is displayed in Fig. 2(c). There exist ESPA mechanisms

that generate less revenue than the PF auction, but
the mechanisms corresponding to the generator set
do indeed approach the limit , which was never exceeded at
equilibrium. We note that this limit is exceeded in transience.
In fact the ESPA- mechanism which performed worst with
respect to revenue generation in the set considered here, ac-
tually generated significantly more revenue in transience than

the others. Understanding transience is a key area for future
research.

Finally, we illustrate the tradeoff incurred when attempting
to approach the revenue limit. While using a relaxation param-
eter greater than the one specified in Proposition 8 often leads
to a stable evolution, to guarantee local stability, we require ’s
smaller than the prescribed values. For the valuations we con-
sidered, this requirement translates to . We
show the evolutions of systems with ten agents, where
and for all agents under the ESPA- mechanisms,
where in Fig. 3. While our supposition that
convergence is delayed for large is supported by the
case, we see that actually converges faster that .
Understanding the relationship between relaxation (or decen-
tralized algorithms) and convergence is another key area for fur-
ther study.

VIII. CONCLUSION

The main contribution of this paper is the development of a
method to construct an infinite class of mechanisms that max-
imize social welfare under the lowest possible signaling and
computational costs for auctioning a divisible resource. The key
factor was coupling signals in the cost rule as well as the alloca-
tion rule. Open problems for future work include transforming
these schemes to domains with different signal-cost-allocation
restrictions (e.g., signals must be proportional to cost) and ex-
tending to divisible resources with alternate properties (e.g., ex-
cess demand spills over into finite buffers). System designers
can now address secondary performance measures, while main-
taining efficiency by optimizing over this class. We illustrate
this by deriving a revenue limit for the ESPA class and identi-
fying mechanisms that approach the limit arbitrarily closely. We
also provide a locally stable negotiation protocol to reach an op-
erating point, which also identifies a possible tradeoff between
revenue and rate of convergence.

Because of transparency, efficiency, and minimal overhead,
one might surmise that the auctions presented here are “ideal”
allocation mechanisms. However, these mechanisms are not
strictly incentive compatible, though calculating how to exploit
this is an open area for research. Furthermore, as for all mech-
anisms, the effects of cooperative (or collusive) phenomena
and other higher-degree responses must be investigated to fully
understand the consequences of implementing these systems.
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