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ABSTRACT

Cooperation among users in a multthop wireless network adds di-
versity to the system and thus it allows us to reduce the overall
transmit power. However, cooperation requires signaling among
users and this reduces the overall rate gain. In this work, we pro-
vide the optimal coding strategy for meshed wireless networks,
where more links are active simultaneously, assuming as optimal-
ity criterion the rates of all the links. This is a multi-objective opti-
mizaticn problem that has interesting applications in multihop and
ad-hoc networks. We evaluate the optimal codes in closed form for
the case where there are two pairs of users acting simultaneously
and we provide an iterative algorithm for the general case. Then
we evaluate the loss, in terms of information rate, resulting from
simultaneous cooperation.

1. INTRODUCTION

Cooperation among users in a wireless network creates the possi-
bility for a capacity and/or diversity gains [8] [4], [7], [6]. Further-
more, as suggested in { 1], if two users or a user and a relay terminal
share data without errors, they create consequently a virfual trans-
mit multiple antenna, whose elements are the antennas of the co-
operating users. Hence, if the base station is equipped with a real
multi-element antenna and the users are perfectly synchronous, the
system has the possibility to induce a virtual multiple-input/multiple-
output (MIMO) system, capable of increasing the capacity by a
factor potentially equal to the minimum of the transmit and re-
ceive antennas. This makes possible a considerable potential gain
which can be exploited, for example, to reduce the average power
necessary Lo achieve the desired bit error rate. However, cooper-
ation inevitably requires the allocation of resources dedicated to
this purpose. For example, in Opportunistic Driven Multiple Ac-
cess (ODMA), which was considered during the standardization
of 3G systems, in Europe, within each transmitted frame there are
time slots dedicated to peer-to-peer communications. Clearly, the
introduction of these time slots entails a corresponding rate loss.
Therefore, in considering the possible benefits of cooperation in
terms of rate, it is necessary to consider the balance between the
waste due to sharing and the gain due to the increase of diversity
and capacity.

In this paper, we consider a scenario with (2 Mobile Terminals
{MT) and as many Relay Terminals (RT). We focus on the uplink
channel, with two hops (from MT to RT and from the pair MT/RT
to the BS). We assign one time slot of duration T%.0p (per frame)
for @ simultaneous MT-t0-RT links. Then, the {2 successive time
slots, of duraticn T are dedicated to the transmission from each
MT/RT pair to the base station (BS). If the BS has at least two
receive antennas, in the 2 slots assigned to the MT/RT-to-BS links,
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we have a potential capacity increase by a factor of two, due to
virtual MIMO. At the same time, there is rate reduction for data
exchange equal to QT /{Q@Ts + Teoop) and a rate loss due to the
interference, quantified by a factor a(Q) < 1. Combining all
these factors, there is a potential rate gain due to cooperation if
20(N QT /{(QTs + Teoop) > 1. In this paper, we derive the
optimal coding strategy maximizing the information rate between
MT and RT, in the presence of interference from the other MT-
to-RT links. In particular, we provide a closed form expression
for the case when there are two pairs of MT/RT’s and we propose
an iterative algorithm valid for the general case. The bounds on
information rate allow us to establish under which condition there
is a real benefit from cooperation, as shown in the last section.

Throughout the paper, we use the following setup. Each user
transmits blocks of A symbols using linear (redundant) precod-
ing. We denote with 8(n) the n-th block of information symbols
and with (n) = Fa(n) the comesponding transmitted block,
where F is an N x Af full-rank matrix. All channels are FIR,
time-invariant, with maximum order L. We denote with kg (n)
the impulse response between the k-th MT and the I-th RT. Two
MT and RT are considered paired, when & = 1. We append a
cyclic prefix C.P of order L to each block to facilitate elimination
of inter-block interference (IBI). We assume, without any loss of
generality, that the information symbols are uncorrelated with vari-
ance o2, and that the receiver noise vector 77(n) is white Gaussian,
with covariance matrix C, = 621.

2. OPTIMAL SHARING STRATEGY

During the time slot dedicated to cooperation, each MT is allowed
to communicate with one RT, but more MT/RT links are active si-
multaneously. We assume first that each MT has already chosen
its RT and then we will remove this assumption by providing a
method to establishing the best pairing between MT and RT. As-
suming perfect synchronization between MT/RT pairs and no co-
operation between MT’s, the N-size vector g, (n), received by the
k-th relay, after discarding the gga:d interval, is

Yi(n) = HFrse(n)+ Y HuFjs5(n)+m(n), (D
=1, 37k

with k = 1,...,¢Q, where H g, thanks to the insertion of the CP,
is an N % N circulant Toeplitz matrix with entries Hy(Z,4) =
hee((i—7) mod N)/,/r,, where hyr(n) and 4 are the chan-
nel impulse response and the distance between the MT and the
corresponding RT in the k-th pair, respectively. We have made
explicit the dependance of the channel impulse response on the
transmitter-to-receiver distance r, as this will give a physical jus-
tification of the optimal coding strategy that we will show in the
next section. We assume that the transmitter power decreases as
1/#2%, with & > 1. Since no cooperation between MT’s is al-
lowed, the second term on the right-hand side of (1) represents the



multi-user interference (MUI) received by the k-th relay caused by
the other active MT-RT links. Therefore, the (Q input-output rela-
tionships (1) can be modelled as a Gaussian interference channel
with () transmitters and () receivers.

Our goal is to find out the coding matrices { F }2_, that maximize
the information rates of all cooperating pairs MT-RT jointly, sub-
ject to the constraint that each transmitter has a maximum power
Pr. Stated in mathematical terms, denoting by Ry, the rate of
the k-th MT/RT link, which is a function of the power budget Pr
and of the coding matrices {F}2_ assigned to each cooperat-
ing pair, we look for the coding matrices solution of the following
optimization problem

{Fi, -, Fg} = argmaz{Ry, Ra,...,Ra}l,
2

subject to

)Qv

where the stars indicate the optimal solution. This is 2 multi-
objective problem, whose optimal solution has to be intended in
the Pareto’s sense.! This multi-obijective formulation is made nec-
essary by the interfering nature of the problem (1), so that increas-
ing the rate of a link would increase the interference on other links
and then decrease their rates. The full characterization of the prob-
lem would require the determination of the capacity region (CR)
of the interference channel (1), but this is still an open problem.
Partial results have been achieved in the simple case of two in-
put/output white Gaussian interference channels. Specifically, in
{31 and | 5] it was shown that the boundary of the CR of such a sys-
tem is achieved, under the assumption of strong interference, by
interference cancellation. However, the assumption made in [3]
and (5] that the interference level must be stronger than the useful
signal is not applicable to our problem. Furthermore, to achieve
the boundary of the CR, some cooperation among different pairs
could be required and this would be to difficult to implement in a
real network,

Thus, we approach the problem searching for an optimum so-
lution of (2), under the following assumption: al) no interference
cancellation is performed at the receiver; a2) multi-user interfer-
ence is treated as additive noise at each receiver; a3) no coopera-
tion among different pairs is allowed; a4) all channels { H x;} 1
are perfectly known to all transmitters and receivers. Only for the
sake of simplicity, we also assume that a5) multi-carrier modula-
tion is performed from each pair, but no constraint on the band-
width that each pair may use, is imposed. Thus all pairs, in princi-
ple, could share all the sub-carriers. Because of al), a2) and a3),
the information rate of the k-th MT/RT link can be computed as the
maximum mutual information I(xy; %, ) between the transmitted
block () and the received block y, (), assuming the other re-
ceived signals as additive noise. Under the hypothesis of additive
Gaussian noise and the power constraint tr{e? R, } < Pr, mu-
tual information J{xx; ¥, ) is maximum when the symbol vectors
{sx{n)}_, are Gaussian. Using a4) and a5), mutual information
exchanged by the k-th MT/RT pair is [2)

tr{o? P FEY < Pr, k=1,...

N-1
1 Hi5) 2o (1) /g
Ry = ~ E log | 1+ T ‘ kkc(;)l p]k(l)/'rkl‘; —
=0 oi/od + ngék A [He(3)2ps{i)

where Hj;.(1) are the samples of the channel transfer function, i.e.
Hi(i) = E;::o Bk (g) € 7™M and py(4) is the power allo-

ndicating with & the set of admissible points (F) = {F4,---,
Fgq} satsfying the constraint in (2), the solution (F*} is an optimum
according to Pareto criterion, iff it is Pareto dominant, i.e. there does not
exist any other point (F) € # and (F) # (F*), such that By, (F) >
Ry (F*) for k = 1,2,...,Q, with at least one of the above inequalities
satisfied in strict-sense,
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cated over the ¢-th sub-carrier from the &-th MT. For each MT/RT
link, such power allocation can be found solving the following
maximization problem

{p},--- ,pa} = argmax{R1, R2,...,Rg},

J .
with Ry = L N1 1M (D 4pe (G} /rR8
& I 2:1:0 a?‘/¢§+zf¢k ,__;}?|ij(,-”2%“)

YN i) =Pr, k=1,...,Q,
3

where p, := {ps(0),...,pe(N — 1)}, Vk. The equality in the
power constraint of (3) follows from the fact that, in a non-coopera-
tive scenario, all MT’s transmit with the maximal average power.
Since the multi-objective maximization (3) is not convex (because
the rates are not convex with respect to the power vectors), the
corresponding weighted scalar optimization problem also is not
convex. Thus, numerical algorithms are able to find only local op-
tima and there is no guarantee that @il the local optima be checked.
Furthermore, the high number of unknowns does not allow an ex-
haustive search, whose computational complexity would be pro-
hibitive. Since enly some local optima of (3) can be found, we
introduce a new optimality criterion, having an interesting physi-
cal interpretation. We start reformulating the above optimization
problem as a competitive non-cooperative game, where multiple
players with conflicting interests compete through self-optimization,
Under this perspective, the optimal soluticns we are looking for
are the stable equilibrium points, called Nash Equilibrium (NE),
in the sense that each player (pair), given the power allocation of
the other players (pairs), does not get any rate increase by chang-
ing its own power. In this paper, we provide: i) The sufficient
conditions for the existence and unigueness of a stable NE: ii) The
optimal solution in closed form, in the simple case of two active
cooperating pairs (Q = 2), When @@ > 2, it is not easy to find a
closed form solution. In such a case, we provide a numerical so-
lution based on a simple iterative distributed algorithm, which is
always convergent to the unique NE.

It is important te remark that the solutions cotresponding to NE
points are, in general, sub-optimal solutions of the problem (3)
and thus they are Pareto inefficient’. On the other hand, since (3)
is non-convex, its numerical (generally suboptimal) solutions are
not guaranteed to be Pareto-dominant of NE points. We will show
in the fast section that, if the sufficient conditions for the existence
and uniqueness of NE hold true, the rate loss of each pair with
respect to its maximum (achievable without interference) is prac-
tically negligible.

log |1+

M

subject ta

3. GAME THEORETIC FORMULATION

We reformulate the problem (3) as a non-cooperative strategic game
[12] with the following structure 9 = (Q, { P }eca, { Bk beea,

H,o5, of), where 2 := {1,2,....Q} is the set of pairs in-
dices; 2Py is the set of the admissible strategies (power distribu-
tion) for the k-th player; the information rates Ry are the pay-
off functions; the power distribution p, = {pe(D)}X, € &,
over the N available sub-carriers, subject to the power constraint
Pr = 623N pi(i), represents the game strategy for the k-th
player. The game structure, ie. the channels {1‘1,-_,,-]»23-:1 and the
variances o and o2 are assumed to be known to all players. More-
over, only pure strategies are allowed. In such a game, each player
competes with the others in order to maximize its own informa-
tion rate Ry (given by (3)), regardless of all other players. In this
competition, if there exists a NE, it means that there is an opti-
mum strategy profile 7 == (B}, Ba, ..., Pg) € P x ... x Fg

Generally, Pareto optimum poinls are not stable solutions in a non-
cooperative game, and the Pareto boundary can often be reached only by a
cooperative approach, that is not applicable in our context.



where “.. each player’s strategy is an optimal response to the
other players’ strategies” [12). Note that, directly from the def-
inition of NE, it follows that the solution at NE is robust with
respect to the worst-case. In fact, at a NE, for each pair, setting
P_, = [‘pla o Pr— lxpk-}-l! - :in it haS to be Rk(pk’p—k) -
maxp, Re(pp.T_.) > maxp, ming_, Ri(p,.p_;) Thus, at
a NE, each player maximizes, at least, its worst rate.

In the following, 1) we prove that the game & atways admits al

least one NE and we provide the sufficient conditions for the unique-

ness of the NE. Then, 2) we propose a simple iterative algorithm
able to achieve such a unique NE.

1} The existence of a NE was already discussed in [9] for the case
of two users transinitting over frequency selective channels, where
a sufficient condition for the existence and uniqueness of a NE was
provided. We extend the solution to an arbitrary number of inter-
fering users through the following

Theorem: Given the game ¥, there exists at least one stable NE.
If, forallz € [1,Q], k € [0, N — 1] and ¢ < 1, the following
co ndmons hold true

] =

i1 lHi-J (}‘ |2 Tn

3 [
4)

then the NE of ¢ is unique.

Proof. See Appendix.

In [2], we proved that the solution set of the above N @Q inequalities
is always non-empty, and one possible set of solutions is given,

|35 (k)| Hya(R)|®
|Hu (k)2 Hus (RY?

.?3 J‘

Vi,j=1,...,Qandi# j, by
5 > f.-ja:f(r) i (5)
where fi; = max |Hj;(k = [r1, .-.700]
and the sets of admissible coefficients {DztJ )}?#j=l represent
the maximal elements ([13], p. 28) of a polyhedron in @E(Q_l)

with respect to componentwise inequality. Using derivations in
[103, it can be seen that, e.g. oj;'(r) = Q@ — 1 forall v, i # j
is a set of admissible coefficients. Interestingly, expression (5) has
a physical interpretation: In order to assure the unigueness of the
competitive equilibrium, a minimum distance between the cooper-
ating pairs has to be guaranteed. Such a distance corresponds to
the maximum level of interference that may be tolerated by each
pair and, as we expected, it depends on i) the number ¢ of pairs;
ii) the distance 7;; between the MT and RT in each pair; and iii)
the worst ratio ( f;;) between the channel transfer function of direct
link and the channel transfer function of all interference links. It
is important to remark that conditions (4) are only sufficient, i.e. a
unigue NE could exist also if they are not met.

2) In the simple case of two cooperating pairs, the power allocation
at NE can be found in closed form and it is given by {2]

. +
pi(k) = ;1; (Aik) - A#—(k) - ﬁB(k)) , ke,
. .
k) = ;}5 (CL—(]"“) - AL—(:) woﬁD(k)) , kel (6)
where (z)" := maz{(0,z) and
Ay(k) = (lf}zz(k)ﬁffu(k)iz)/E(k);
Aak) = (Ha (WP Hn®))/Bk);
B(k) = (|ﬁm(k)|2:|H22(k)t2)/E(k);
Ci(k) = lﬁu(k)lleu(f)F/E(k);
D(k) = (Hua(k)® — [Hiu (k)] E(R);
where E(k) = 1H12(k)!2 |H:»1(-[»)|2 |ﬁ22(k)|2 \H11(k)}* and

\Hij(R)|? := \Hij (k)? /v, ford, 5 = 1, ..., Q. The symbols I,
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and f2 denote the sets of sub-carriers allocated to the two MT/RT
links, with I1, I» € {0,1,..., N}, and, in general, I, N I # Q.
The constants yy and 2 are chosen in order to satisfy the power
constraint in (3). More specifically, we get

Tkely Atlk) Tkely B ey, A1(k)
1 _ 1+Ekerz AQ(k)}Jr [ 12ke11 A28

+ker, D(k)]

©“1 _Zkedy MM Tkery AT
Lrery Crlk)~ Ther; Az0H)
kel Ak Ekez2 D) Tgery A10k)
Prii Epen S o Ticn iy "Lken B“"]

Trer, Az(k)~ —zg—kEI A:S)fcﬁ?li I
In [2], we provide a simple iterative algorithm to compute the sets
Iy and I5. The above solution has been derived assuming that no
channel has zeros on the unit circle and that” |H i (1'«:)|2iH22(.k:)l2
|H12(k)| |Ha1(k)]? # O,fork € In, and puy|Hao(E)|* —

|H12(k)| #0,fork e I1.

If @ > 2, the closed form solution is not available. In such a
case, to achieve the unique NE, an iterative algorithm based on the
gradient descent method is proposed in [2]. However, this algo-
rithm requires a cenfralized control. A simpler distributed algo-
rithm that achieves the NE can be obtained as follows. From the
definition of NE, we deduce that, for each NE, the optimal power
allocation strategy for every player of the game %, must be the
water-filling power distribution over the available sub-carriers sub-
ject to the power constraint Pr and regarding the interference due
to the other players as additive (colored) noise. Hence, denoting
by P := (Py, . ... Pg) the optimal power distribution adopted by
the players, the power allocation reaching one NE must be solution
of the following system of implicit equations

_ (2) _ a1 _° +022J;ﬂ. |Hgk(1)lng{1)
P e P ARGTE ’
24,2 5 25
1 Pr4+% i€l T 202“:: ‘ (.‘:;‘i(;)l 7
P = r ki R 2511‘-,]{:(‘67)9,

where [ is the set of sub-carriers allocated for the k-th pair and
Ny, the cardinality of I;.. Since our game ¢ admits at least one sta-
ble NE, the existence of a simultaneous water-filling solution (7) is
guaranteed, It follows that an iterative procedure among the play-
ers (cooperating pairs), where at every step, each player (pair) per-
forms the single-user water-filling power distribution (7), regard-
ing the interference from the other players as noise, if it converges,
it has to converge to one of the stable NE’s, from any starting poim

In [10], it has proved that if conditions (5), with oy (r)

hold true, the iterative water-filling algorithm always converges to
the unique NE.

Pairing among MT and RT can be performed by introducing a cost
function f (R, (P),-..,Ra(B)) : #9 ++ Z of the information
rates R1(@), ..., Ro(P), likee.g. the sum-rate f = Z§=1 Ry (D),
achieved by the proposed IWFA. We may in fact rank each pairing
according to f (Ri(P), ..., Rq(D)). Although we are not able
to insure the convergence of the algorithm to a global solution of
(3), we will show via simulation, that, if the best pairing is per-
formed, the rate loss of each pair with respect to its maximum rate
achievable without interference, is negligible when ri; /ri; > 1.

4. SIMULATION RESULTS

We checked our theoretical derivations via numerical results. We
have simulated our algorithm using the following setup. The num-
ber of active MT's and RT’s is ¢ = 2 for Fig.1 and 2, whereas

3For fading channels, {hy; (n)}f}.f1 are continuous random vari-
i=
ables, so that these events have zero measure.



(2 = 3 for Fig.3. The size of each transmitted block is N = 64 and
the number of information symbols in each block is M = N; the
channels are simulated as FIR filters of order L = 6, whose taps
are iid complex Gaussian random variables with zero mean and
unit variance; the additive noise 7,.(n), forallr = 1,2,...,Qis
assumed to be drawn from a complex white Gaussian random pro-
cess with zero mean and variance o2 = 1, for each component;
the signal to noise ratio SNE := Pr/o2 is 5 dB. Each trans-
mitter and receiver is equipped with one antenna. For the sake of
simplicity, we have assumed also ry; = rj; and ri; = ry4 for all
,7=12,...,0Q.

In Fig.1 we compare the results of our closed form expression
(6) with the numerical results provided by [WFA. Specifically, we
report, for Q = 2 (each subplot refers to one of the pairs), the
optimal power spectral density (PSD) distribution over the avail-
able sub-carriers provided by TWFA (red solid line} and by (6)
(red markers). In the same sub-plots, we report also (blue curves)
the PSD of the equivalent noise (thermal plus interference noise)
normalized by the channel transfer function square modulus of
the cooperating pair which the subplot refers to. We have set
r11/r12 = re2/ra1 = 1/5 (i.e., the distance between MT and RT
in each pair is one fifth of the distance between any two different
pairs). We have found that, in this case, IWFA converged in only
three iterations. In Fig.2, subplots a) and b) depict the same quan-
tities as in Fig.1, but for distance ratios 711 /ri2 = ra2/ra1 = 1
(high interference level)., To quantify the convergence speed of
IWFA, in subplot ¢) of Fig.2, we report the information rates (nor-
malized by the corresponding rates provided by the closed form as
a function of iterations, for the pairs of subplots a) and b). From
Figs.1 and 2 we infer that; i) for each pair, the optimal power allo-
cation performs the simultaneous water-filling solution (7); it) The
IWFA converges to the unigue® optimal Nash equilibrium in a very
few iterations, also in a high interference level environments (see
Fig.2c); iii) depending on the interference level, some sub-carriers
are shared, as in Fig.1 where the interference is low, or not, as in
Fig.2, where the interference is high and different MT's opt for
transmission over non-overlapping bands. In both cases, the si-
multanecus water-filling solution is reached.

We have pointed out that, if conditions (5) do not hold true, IWFA
could not converge. Furthermore, even if IWFA converges, the fi-
nal NE is not, in general, a global optimal solution of (3). In order
to quantify the rate loss due to possible sub-optimal solutions pro-
vided by IWFA, we introduce, for each pair, the normalized rate
loss Ri°*" := 1 — Ry/Rj, where R;; denotes the k-th pair’s rate
reached by IWFA for a given channels set, whereas R} is the max-
imum k-th available rate, achievable in the absence of interference
from any other pair. In Fig.3, we report the rate loss R, for
500 independent channel realizations, in case of three cooperat-
ing MT/RT pairs, as a function (for each channels realization) of
the ratio rx;/rxi. Experimentally, we have found that IWFA has
always converged to the same value, regardtess of conditions (5)
and the channels and the power budgets for each pair. Interest-
ingly, the rate loss becomes negligible as ri; /Tki increases (e.g.,
as Ticj /T > 10 the loss falls below 5%).

In summary, in this paper we have shown how to find the optimal
coding strategy for MT’s in a wireless network, where each MT
has an associated RT. The solution is optimal in the sense that it
leads to a stable Nash equilibrium for a non-cooperative environ-
ment, i.e. when each MT send its data only to the terminal, but
it does not share any information with the other MT’s. In gen-
eral, allowing for cooperations among the MT’s, one could get an
improvement and tend towards the optimal Pareto solutions. How-

4The conditions required in [9] to guarantee a unique Nash equilibrium
hold true in this case.
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Fig. 1. Optimal PSD’s for the two links: [WFA (solid line), theo-
retical values (stars) and interference from the other pair (dot and
dashed line).

iterations

Fig. 2. a)-b) Optimal PSD’s for the two links: IWFA (solid line)
and interference from the other pair (dot and dashed line}; c) rate
vs, iteration index.

ever, this would come at the cost of signalling among the MT’s,
so that the final balance in terms of rate is still an open prob-
lem. We have shown under which conditions, depending on the
transmit power, relative distance and channel transfer functions,
the solution is unique. As expected, the conditions require that
the inter-pair (MT-to-MT} distances be sufficiently greater than the
intra-pair (MT-to-RT) distance. Nevertheless, we have observed,
by simulation, that the proposed iterative water-filling algorithm
has always converged, even when the conditions for the uniqueness
did not held true. The suggested strategy can be used in meshed
or ad-hoc networks, where there is no infrastrueture and each MT
can communicate, in principle, with another MT, without passing
through a BS, or in multihop networks. In the latter case, specific
time slots have to be allocated for MT-to-RT links. Simultaneous
exchanges among &) pairs are necessary, to avoid excessive rate
losses. In practice, the number @ of pairs will result as a trade-off
between the information rate loss due to interference, arising as ¢
increases, and the waste of resources occurring for low values of

@ 5. REFERENCES

[11 S. Barbarossa, G. Scutari, “Cooperative diversity through
virtual arrays in multihop networks”, Proc. of ICASSP '03,
Hong-Kong, April 2003.

{21 G. Scutari, S. Barbarossa, D). Ludovici, “Cooperation diver-



Mk

Fig. 3. Rate loss due to simuitaneous interfering MT/RT links, as
a function of the ratio between the distance between pairs and the
distance between MT and RT of each pair.

sity in multihop or ad-hoc wireless networks”
Trans on Signai Proc., 2003.

, submitted to

[3} A. B. Carleial, “Interference Channel”, JEEE Trans. on In-

form. Theory, pp. 60-70, Vol. 24, Jan. 1978.

T. M. Cover, A A, El Gamal, ““Capacity theorems for the re-
lay channel”, IEEE Trans. on Inform. Theery, pp. 572584,
Sept. 1979.

T. S. Han, K Kobayashi, “ A New Achievable Rate Region
for The Interference Channel”, IEEE Trans. on Inform. The-
ory, pp. 49-60, Vol. 27, Jan. [981.

V. Emamian, M. Kaveh, “Cembating Shadowing Effects for
Systems with Transmitter Diversity by Using Collaboration
among Mobile Users”, Proc. of the ISC., Nov. 13-16, Tai-
warn.

J.N. Laneman, D. N. Tse, G. W. Wornell, “An efficient proto-
col for realizing cooperative diversity in wireless networks”,
Proc. of 2001 ISIT, p. 294, Washingron DC, June 2001.

A. Sendonaris, E. Erkip, B. Aazhang, “Increasing uplink ca-
pacity via user cooperation diversity”, Proc. of 1998 ISIT, p.
156, Cambridge, MA, August 1998,

W. Yu, L.M. Cioffi “Competitive Equilibrium in the Gaussian
Interference Channel”, Proc. of 2000 ISIT, p. 431, Somrento,
[taly, June 2000.

S.T. Chung, §.J. Kim, J. Lee, J. M. Cioffi, “A game-theoretic
approach to power allocation in frequency-selective Gaus-
sian interference channels,” I8/T 2003,Yokohama, Japan,
June 24- July 4, 2003.

1. Rosen, “Existence and Uniqueness of Equilibrium Points
for Concave n-Person Games™, Econometrica, Vol. 33, pp.
520-534, July 1965.

D. Fudenberg, J. Tirole “Game Theory”, MIT Press, 1991.

S. Boyd, L. Vandenberghe, “‘Convex optimization”, to be
published. Available at http://www.stanford.edu/class/ee364

R. A. Horn, C. R. Johnson “Matrix Analysis”,Cambridge
University Press, 1999.

{4]

[5

—

(6]

71

8]

9

{101

[11j

(12]
{13}

[14]

6. APPENDIX

We briefly outline the proof of the theorem, building on the gen-
eral game theory formulation of [11]. As in {11], we denote with
T € E™* the my-size vector that represents the strategy (power
allocation) of the k-th player, where E™* is the my-dimensional
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Euclidean space; 2 is the set {1,2,...
collect all the vectors xp in @ {®1,...,oa] € E™, where
E™ = E™ x... E™ isthe product space and m = Y} _, mi.
Because of the constraints, the overall admissible strategy = is
assumed to belong to a subset R of E™. Denoting by Qj the
orthogonal projection of the set R onto E™*, we introduce also
the set § := Q1 X Q2+ x g, 2 R. The payoff of the k-
th player (its transmission rate) is given by the function ¢w(z) :
E™ — Z, which depends on the strategies of ail players. We de-
fine the weighted nonnegative sum of the payoff functions ¢; ()
as o(x,7) = 3.0, rids(a), for each nonnegative vector + ;=
fri,...,mn] € %%, and the associated pseudo-gradient vector
glx,r) = [nVig] (z),... ,rnvnég(m)]T. We introduce the
following
Definition: The function o{(x,r) : R — £ is Diagonal Strict
Concave (DSC) if, for every xp,xz1 € R it holds that (z, —
20) {g(xo,7) — g{=1,7)) > 0. As shown in {11}, a sufficient
condmon for o (x, r) to be DSC is that the r xm matrix Gz, 7)+
G(z, ™7 be positive definite for & € R, where G(z, r) denotes
the Jacobian of —g{z, r) with respect to z, defined as [G (. 7)]i;
= —8g;i(z,r)/0z;, fori,j = 1,...m. The game & = {1, R,
{de 1=} admits at least one smble NE if the following condi-
tions hoid true [12, Theorem 1]: i) The set R is a convex, closed
and bounded set; ii) Every payoff function ¢ () is continuous
in & € § and concave in xy, for each fixed value of (zy, .., Tx_1,
k41, .., Tn). The NE is unique if the function o (z, r) is DSC for
some r = T > 0, and such an equilibrium point is independent
of 7. To prove our theorem, we start showing that our game %, as
defined in Section 3, ~Satisﬁcs the conditions i) and ii). In fact, ¥
is a special case of ¥, where the admissible strategy x; of each
player is restricted to a subset (call it @, ) of E™*, that is orthogo-
nal to the other constraint sets @, with ¢ # &. Using the following
equivalences 2 — Q, E™ — ZY ¥k € 0, ¢x{z) — Ri(p) =
1 N-1 A (k) 2pi (k)
¥ Lo log (1 2 L, s (R (0
[P;, .- gl — @, it can be verified that the game & admits at
least one stable NE. Indeed i) R S =Q1x%,..., xQ, where
Qi =0, = {p; € ZY|TT  pi(k) < PT} is the simplex
in &Y, thus it is a convex, closed and bounded set. Since each
; is convex, closed and bounded, it follows that R is also con-
vex, closed and bounded [13]; ii) each function Ry(p) is con-
tinuous in p and concave with respect 1o p,, for any fixed (p,,
-3 Pr—1:Prs10 - Pg)-
We provide now the sufficient conditions for the NE of the game
% 1o be unique. Let G (p, r) be the Q x @ matrix, defined as

,n} of the n players. We

y Lk — Py,

R
I
=T§10§\?e |Hii(k)|2|HiJ'(k)i2 )]

03 /0% + L5y | Hii(k)[ps (k)
fori,j = 1,...,¢¢ and k = 0,...,N — 1. Since there al-
ways exists a permutation matrix T such that TG (p,r)TT =
diag{G1(p,+),-.-,Gn-1(p.7}} [2], the NE of the game ¢ is
unique if the matrix G (p,7) + Gr(p, )7 1s positive definite for
every p, k € [0, N—1] and somer > 0. Using Gerschgorin’s the-
orem [14), it may be proved that the matrix G (p, 7 )+ G (p, M7
& R;

is positive definite if [2]
L 3 [ H
>
Z 7| 8p;(k)dp: (k)
(9}

a7 (k)
foralli € [1, Ql.k € [0, N — 1] and some » > 0. Introducing
(R) in (9) and setting r; = r;, we obtain the conditions (4).
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