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ABSTRACT 

Cooperation among users in a multihop wireless network adds di- 
versity to the system and thus it allows us to reduce the overall 
transmit power. However, cooperation requires signaling among 
users and this reduces the overall rate gain. In this work, we pro- 
vide the optimal coding strategy for meshed wireless networks, 
where more links are active simultaneously, assuming as optimal- 
ity criterion the rates of all the links. This is a multi-objective opti- 
mization problem that has interesting applications in multihop and 
ad-hoc networks. We evaluate the optimal codes in closed form for 
the case where there are two pairs of users acting simultaneously 
and we provide an iterative algorithm for the general case. Then 
we evaluate the loss, in terms of information rate, resulting from 
simultaneous cooperation. 

1. INTRODUCTION 

Cooperation among users in a wireless network creates the possi- 
bility for a capacity andor diversity gains [XI 141, 171, [61. Further- 
more, as suggested in [I] ,  if two users or a user and a relay terminal 
share data without errors, they create consequently a virtual trans- 
mit multiple antenna, whose elements are the antennas of the co- 
operating users. Hence, if the base station is equipped with a real 
multi-element antenna and the users ax petiectly synchronous, the 
system has the possibility to induce avirtual multiple-inputtmultiple- 
output (MIMO) system, capable of increasing the capacity by a 
factor potentially equal to the minimum of the transmit and re- 
ceive antennas. This makes possible a considerable potential gain 
which can be exploited, for example, to reduce the average power 
necessary to achieve the desired bit error rate. However, cooper- 
ation inevitably requires the allocation of resources dedicated to 
this purpose. For example, in Opportunistic Driven Multiple Ac- 
cess (ODMA), which was considered during the standardization 
of 3G systems, in Europe, within each transmitted frame there are 
time slots dedicated to peer-to-peer communications. Clearly, the 
introduction of these time slots entails a corresponding rate loss. 
Therefore, in considering the possible benefits of cooperation in 
terms of rate, it is necessary to consider the balance between the 
waste due to sharing and the gain due to the increase of diversity 
and capacity. 

In this pdper, we consider a scenario with Q Mobile Terminals 
(MT) and as many Relay Terminals (RT). We focus on the uplink 
channel, with two hops (from MT to RT and from the pair MTKT 
to the BS). We assign one time slot of duration T,,,, (per frame) 
for Q simultaneous MT-to-RT links. Then, the Q successive time 
slots, of duration T, are dedicated to the transmission from each 
MTRT pair to the base station (BS). If the .BS has at least two 
receive antennas, in the Q slots assigned to the MTRT-to-BS links, 
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we have a potential capacity increase by a factor of two, due to 
virtual MIMO. At the same time, there is rate reduction for data 
exchange equal to QT,/(QT, + T&,)  and a rate loss due to the 
intetierence, quantified by a factor a(&) < 1. Combining all 
these factors, there is a potential rate gain due to cooperation if 
Za(Q)QT,/(QT, + T,,,,) > 1. In this paper, we derive the 
optimal coding strategy maximizing the information rate between 
MT and RT, in the presence of interference from the other MT- 
to-RT links. In particular, we provide a closed form expression 
for the case when there are two pairs of MTRT's and we propose 
an iterative algorithm valid for the general case. The bounds on 
information rate allow us to establish under which condition there 
is a real benefit from cooperation, as shown in the last section. 

Throughout the paper, we use the following setup. Each user 
transmits blocks of M symbols using linear (redundant) precod- 
ing. We denote with 8 (n )  the n-th block of information symbols 
and with x ( n )  = F s ( n )  the corresponding transmitted block, 
where F is an N x M full-rank matrix. All channels are F'IR, 
time-invariant, with maximum order L. We denote with hkl(n) 
the impulse response between the k-th MT and the 1-th RT. Two 
MT and RT are considered poired, when k = 1. We append a 
cyclic prefix CP of order L to each block to facilitate elimination 
of inter-block interference (IBI). We assume, without any loss of 
generality, that the information symbols are uncorrelated with vari- 
ance a:, and that the receiver noise vector s ( n )  is white Gaussian, 
with covariance matrix C ,  = a:I. 

' 

2. OPTIMAL SHARING STRATEGY 

During the time slot dedicated to cooperation, each MT is allowed 
to communicate with one RT, but more M T R T  links are active si- 
multaneously. We assume first that each MT h a  already chosen 
its RT and then we will remove this assumption by providing a 
method to establishing the best pairing between MT and RT. As- 
suming perfect synchronization between M T R T  pairs and no co- 
operation between MT's, the N-size vector sk(n), received by the 
k-th relay, after discarding the guard interval, is 

0 
Vi , (n )  = HkkFkSk(n )+  H j k P j s j ( n ) + V k ( n ) ,  (1) 

j=1. j # k  

with k = 1 , .  . . , Q, where H k k ,  thanks to the insertion of the CP, 
is an N x N circulant Toeplitz matrix with entries H k k ( i , j )  = 
hkk(( i -y)  mod N ) / a ,  where hkk(n) andrkk  are thechan- 
ne1 impulse response and the distance between the MT and the 
corresponding RT in the k-th pair, respectively. We have made 
explicit the dependance of the channel impulse response on the 
transmitter-to-receiver distance r ,  as this will give a physical jus- 
tification of the optimal coding strategy that we will show in the 
next section. We assume that the transmitter power decreases as 
llr'", with a 2 1. Since no cooperation between MT's is al- 
lowed, the second term on the right-hand side of ( 1 )  represents the 



multi-user interference (MU11 received by the k-th relay caused by 
the other active MT-RT links. Therefore, the Q input-output rela- 
tionships ( I )  can be modelled as a Gaussian interference channel 
with Q transmitters and Q receivers. 
Ourgoalis tofindoutthecodingmatrices (Fk}$l that maximize 
the information rates of all cooperating pairs MT-RT jointly, sub- 
ject to the constraint that each transmitter has a maximum power 
Pr. Stated in mathematical terms, denoting by Rk the rate of 
the k-th MTRT link, which is a function of the power budget P, 
and of the coding matrices assigned to each cwperat- 
ing pair, we look for the coding matrices solution of the following 
optimization problem 

{ F : ,  . . . , F h }  = argmax{Rl, R z , .  . . , RQ) ,  

subject to 
(2) 

where the stars indicate the optimal solution. This is a multi- 
objective problem, whose optimal solution has to he intended in 
the Pareto's sense.' This multi-objective formulation is made nec- 
essary by the interfering nature of the problem (I),  so that increas- 
ing the rate of a link would increase the interference on other links 
and then decrease their rates. The full characterization of the prob- 
lem would require the determination of the capacity region (CR) 
of the interference channel (I), but this is still an open problem. 
Panial results have been achieved in the simple case of two in- 
putloutput white Gaussian interference channels. Specifically, in 
[31 and 151 it was shown that the boundary of the CR of such a sys- 
tem is achieved, under the assumption of strong interference, by 
interference cancellation. However, the assumption made in [3] 
and I51 that the interference level must he stronger than the useful 
signal is not applicable to our problem. Furthermore, to achieve 
the boundary of the CR. some cooperation among different pairs 
could be required and this would be to difficult to implement in a 
real network. 

Thus, we approach the problem searching for an optimum so- 
lution of (2), under the following assumption: a l )  no interference 
cancellation is performed at the receiver; a2) multi-user interfer- 
ence is treated as additive noise at each receiver; a3) no coo era 

are perfectly known to all transmitters and receivers. Only for the 
sake of simplicity, we also assume that a5) multi-carrier modula- 
tion is performed from each pair, but no constraint on the band- 
width that each pair may use, is imposed. Thus all pairs, in princi- 
ple, could share all the sub-caniers. Because of al) ,  a2) and a3), 
the information rate of the k-th MTRT link can be computed as the 
maximum mutual information J ( x : L ;  y k )  between the transmitted 
block xr;(n) and the received block y , (n) ,  assuming ihe other re- 
ceived signals as addirive noise. Under the hypothesis of additive 
Gaussian noise and the power constraint t.r{u:R,,) 5 PT, mu- 
tual information I(2k; y , )  is maximum when the symbol vectors 
{sk(n)}f==l are Gaussian. Using a4) and as), mutual information 
exchanged by the k-th MTRT pair is [Z] 

t r ( u : F r F f }  2 PT, I; = 1 , .  . . ,Q, 

tion among different pair sisallowed a4) allchannels {Hkj )k , j= l  g -  

where Hjk( i )  are the samples of the channel transfer function, i.e. 
Hjk(i)  = E,"=, h j k ( q )  e--jzT'q", and p k ( i )  is the power allo- 

'Indicating ujith 9 the set of admissible points ( F )  = { F I , .  . . , 
FQ}  satisfying the constraint in (2), the solution (F')  is an optimum 
according to Pareto criterion, i f f  it is Pareto dominant, Le. there does not 
exist any other point (F) E 3 and (F) # ( F * ) ,  such that Rk(F) 2 
Rk(F*) for k = 1 , 2 , .  . . I Q, with at least one of the above inequalities 
satisfied in strict-sense. 

cated over the i-th sub-carrier from the k-th MT. For each MTIRT 
link, such power allocation can be found solving the following 
maximization problem 

{ P ; , . . .  , p b )  =argmax{Ri ,Rz,  ..., R Q } ,  

(3) 
where p ,  := { p t ( O ) ,  . . . ,pk(N - l ) } , V k .  The equality in the 
power constraint of (3) follows from the fact that, in a non-coopera- 
tive scenario, all MT's transmit with the maximal average power. 
Since the multi-objective maximization (3) is not convex (because 
the rates are not convex with respect to the power vectors), the 
corresponding weighted scalar optimization problem also is not 
convex. Thus, numerical algorithms are able to find only local op- 
tima and there is no guarantee that all the local optima be checked. 
Furthermore, the high number of unknowns does not allow an ex- 
haustive search, whose computational complexity would be pro- 
hibitive. Since only some local optima of (3) can be found, we 
introduce a new optimality criterion, having an interesting physi- 
cal interpretation. We start reformulating the above optimization 
problem as a competitive nun-cooperative game, where multiple 
players with conflicting interests compete through self-optimization. 
Under this perspective, the optimal solutions we are looking for 
are the stable equilibrium points, called Nash Equilibrium (NE), 
in the sense that each player (pair), given the power allocation of 
the other players (pairs), does not get any rate increase by chang- 
ing its own power. In this paper, we provide: i) The sufficient 
conditions for the existence and uniqueness of a stable N E  ii) The 
optimal solution in closed form, in the simple case of two active 
cooperating pairs (Q = 2). When Q > 2, it is not easy to find a 
closed form solution. In such a case, we provide a numerical so- 
lution based on a simple iterative disrributed algorithm, which is 
always convergent to the unique NE. 
It is important to remark that the solutions corresponding to NE 
points are, in general, sub-optimal Solutions of the problem (3) 
and thus they are Pareto inefficient'. On the other hand, since (3) 
is nun-convex, its numerical (generally suboptimal) solutions are 
not guaranteed to be Pareto-dominant of NE points. We will show 
in the lasf section that, if the sufficient conditions for the existence 
and uniqueness of NE hold true, the rate loss of each pair with 
respect to its maximum (achievable without interference) is prac- 
tically negligible. 

3. GAME THEORETIC FORMULATION 
We reformulate the problem (3) as a non-cooperative strategic game 
[I21 withthefollowingstructure(B = (n, {gk}kEn, {Rk}kCn, 
H ,  u:, u.?), where R := {l: 2 , .  . . ,Q} is the set of pairs in- 
dices; &% is the set of the admissible strategies (power distribu- 
tion) for the k-th player; the information rates Rk are the pay- 
off functions; the power distribution p ,  := {pk ( i ) }L ,  E Pk 
over the N available sub-carriers, subject to the power constraint 
PT = u.?E,"=,pk(i), represents the game strategy for the k-th 
player. The game structure, i.e. the channels {Hij}: j=l  and the 
variances u,?, and u: are assumed to be known to all players. More- 
over, only pure strategies are allowed. In such a game, each player 
competes with the others in order to maximize its own informa- 
tion rate Rk (given by (3)). regardless of all other players. In this 
competition, if there exists a NE, it means that there is an opti- 
mum strategy profile p := (PI, pz, . . . ,PQ) E 91 x . . . x ,!PQ 

'Generally, Pareto optimum points are not stable solutions in a non- 
cooperative game, and the Pareto boundary can often be reached only by a 
cooperative approach, that is not applicable in our context. 
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where ".,, each player's strategy is an optimal response to the 
other players' strategies" [12l. Note that, directly from the def- 
inition of NE, it follows that the solution at NE is robust with 
respect to the worst-case. In fact, at a NE, for each pair, setting 
P - k  := b i , . . ,Pk - i ,Pk+ i ,  . . , P ~ l , i t h a s t o b e R k ( P , , P - k )  = 
maxp, Rk(Pk>p-k) 2 maxp, minp-, Rk(Pk,P-k). Thus, at 
a NE, each player maximizes, at least, its worst rate. 
In the following, 1) we prove that the game Y always admits al 
least one NE and we provide the sufficient conditions for the unique- 
ness of the NE. Then, 2) we propose a simple iterative algorithm 
able to achieve such a unique NE. 
1) The existence of a NE was already discussed in 191 for the case 
of two users transmitting over frequency selective channels, where 
a sufficient condition for the existence and uniqueness of a NE was 
provided. We extend the solution to an arbitrary number of inter- 
fering users through the following 
Theorem: Given the game Y, there exists at least one stable NE. 
If, for all i E [l, Q],  k E [O, N - 11 and c < 1, the following 
conditions hold true 

- -  

" .  
(4) 

then the NE of (B is unique. 
Pmot See Appendix. 
In [Z], we proved that the solution set of the above N Q  inequalities 
is always non-empty, and one possible set of solutions is given, 
V i , j  = 1 , .  . . ,Q andi  # j , b y  

rP, > f i j a ;1 (T )TP: ,  (5 )  

where f l j  = max (Hij(k)lZ/lH~i(k)12, T := [nl, ... T Q Q ]  

and the sets of a$missible coefficients { c Y ~ ~ ( T ) } $ ~ = ~  represent 
the maximal elements (1131, p. 28) of a polyhedron in 9:(Q-1) 
with respect to componentwise inequality. Using derivations in 
[IO], it can be seen that, e.g. CY;'(T) = Q - 1 for all T ,  i # j 
is a set of admissible coefficients. Interestingly, expression (5 )  has 
a physical interpretation: In order to assure the uniqueness of the 
competitive equilibrium, a minimum distance between the cooper- 
ating pairs has to be guaranteed. Such a distance corresponds to 
the maximum level of interference that may be tolerated by each 
pair and, as we expected, it depends on i) the number Q of pairs; 
ii) the distance ~ i ;  between the MT and RT in each pair; and iii) 
the worst ratio (fij) between the channel transfer function of direct 
link and the channel transfer function of all interference links. It 
is important to remark that conditions (4) are only sufficient, i.e. a 
unique NE could exist also if they are not met. 
2) In the simple case of two cooperating pairs, the power allocation 
at NE can be found in closed form and it is given by 121 

and IZ denote the sets of sub-caniers allocated to the two MTlRT 
links, with 11, 12  2 { O ,  1 , .  . . , N } ,  and, in general, II n 12 # 0. 
The constants p1 and pz are chosen in order to satisfy the power 
constraint in (3). More specifically, we get 

pr I+'ZZ~;. 4:;; +.:, D ( * ) Z ~ . E I  A 1 i k l  
1 -  r*E,2 cli;l + r k t r ,  B ( k )  
-- 

~ ; E I ~  A i l * ) X x t r ,  A i ( k )  
X k s r 1  A*(*)-E ktrZ C r ( k 1  

LZ 

In 121, we provide a simple iterative algorithm to compute the sets 
I1 and I,. The above solution has been derived assuming that no 
channel haszeros on theunit circle and that3 l~ll(k)12/fi~~(k)/2 
-lfi1;z(k)1~1kz1(k)l~ # 0,fork E Iz, and ~ 1 l ~ 2 z ( k ) ( ~  -@z 
lE12(k)1'# 0,fork E 11. 

If Q > 2, the closed form solution is not available. In such a 
case, to achieve the unique NE, an iterative algorithm based on the 
gradient descent method is proposed in [ 2 ] .  However, this algo- 
rithm requires a centralized control. A simpler distributed algo- 
rithm that achieves the NE can be obtained as follows. From the 
definition of NE, we deduce that, for each NE, the optimal power 
allocation strategy for every player of the game ($, must be the 
water-filling power distribution over the available sub-caniers sub- 
ject to the power constraint PT and regarding the interference due 
to the other players as additive (colored) noise. Hence, denoting 
by p := (PI> . . . , p Q )  the optimal power distribution adopted by 
the players, the power allocation reaching one NE must be solution 
of the followine system of imdicit eauations 

where I, is the set of sub-caniers allocated for the k-th pair and 
Nk the cardinality of I,. Since our game Y admits at least one sta- 
ble NE, the existence of a simultaneous water-filling solution (7) is 
guaranteed. It follows that an iterative procedure among the play- 
ers (cooperating pairs), where at  every step, each player (pair) per- 
forms the single-user water-filling power distribution (7). regard- 
ing the interference from the other players as noise, if it converges, 
it has to converge to one of the stable NE'S, from any starting point. 
In [IO], it has proved lhdt if conditions (3, with a;'(?) = Q - 1, 
hold Vue, the iterative water-filling algorithm always converges to 
the unique NE. 
Pairing among MT and RT can be performed by introducing a cost 
function f (Rl(p) ,  . . . , R Q ( ~ ) )  : 9" c 9 of the information 
ratesRl(p), .  . . ,Rq(p), l ikee.g.  thesum-rate f = Rk(p) ,  
achieved by the proposed IWFA. We may in fact rank each pairing 
according to f (Ri(p), . . . , R Q ( ~ ) ) .  Although we are not able 
to insure the convergence of the algorithm to a global solution of 
(3), we will show via simulation, that, if the best pairing is per- 
formed, the rate loss of each pair with respect to its maximum rate 
achievable without interference, is negligible when ~,j /r , .  >> 1. 

4. SIMULATION RESULTS 

We checked our theoretical derivations via numerical results. We 
have simulated our algorithm using the following setup. The num- 
ber of active MT's and RT's is Q = 2 for Fig.1 and 2, whereas 

ZFor fading channels, {hkj(n)}:,j=l are continuous random var- 
ables, so that these event3 have zero measure. 
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Q = 3 for Fig.3. The size ofeach transmined block is N = 64 and 
the number of information symbols in each block is M = N ;  the 
channels are simulated as FIR filters of order L = 6,  whose taps 
are iid complex Gaussian random variables with zero mean and 
unit variance; the additive noise q7(n) ,  for all r = 1,2,. . . ,Q is 
assumed to be drawn from a complex white Gaussian random pro- 
cess with zero mean and variance ui = 1, for each component; 
the signal to noise ratio S N R  := P ~ l u ? ,  is 5 dB. Each trans- 
mitter and receiver is equipped with one antenna. For the sake of 
simplicity, we have assumed also r,; = rjj and rij = rji for all 
i , j = 1 ; 2  ,..., Q. 
In Fig.1 we compare the results of our closed form expression 
(6)  with the numerical results provided by IWFA. Specifically, we 
report, for Q = 2 (each subplot refers to one of the pairs), the 
optimal power spectral density (PSD) distribution over the avail- 
able sub-camers provided by IWFA (red solid line) and by (6) 
(red markers). In the same sub-plots, we report also (blue curves) 
the PSD of the equivalent noise (thermal plus interference noise) 
normalized by the channel transfer function square modulus of 
the cooperating pair which the subplot refers to. We have set 
rII/rIz = r22/rz1 = 115 (Le., the distance between MT and RT 
in each pair is one fifth of the distance between any two different, 
pain). We have found that, in this case, IWFA converged in only 
three iterations. In Fig.2, subplots a) and b) depict the same quan- 
tities as in Fig.1, but for distance ratios T ~ I / T ~ Z  = r 2 2 / r 2 1  = 1 
(high interference level). To quantify the convergence speed of 
IWFA, in subplot c) of Fig.2, we report the information rates (nor- 
malized by the corresponding rates provided by the closed form as 
a function of iterations, for the pairs of subplots a) and b). From 
Figs.1 and 2 we infer that: i) for each pair, the optimal power allo- 
cation performs the simultaneous water-filling solution (7); ii) The 
IWFA converges to the unique4 optimal Nash equilibrium i n  a very 
few iterations, also in a high interference level environments (see 
Fig.2~);  iii) depending on the interference level, some sub-carriers 
are shared, as in Fig.1 where the interference is low, or not, as in 
F i g 2  where the interference is high and different MT's opt for 
transmission over nun-overlapping bands. In both cases, the si- 
multaneous water-filling solution is reached. 
We have pointed out that, if conditions ( 5 )  do not hold true, IWFA 
could not converge. Funhermore, even if rWFA converges, the fi- 
nal NE is not, in general, a global optimal solution of (3). Tn order 
to quantify the rate loss due to possible sub-optimal solutions pro- 
vided by IWFA, we introduce, for each pair, the normalized rate 
loss RfP"" := 1 - Rk/R;,  where RI, denotes the k-th pair's rate 
reached by IWFA for a given channels set, whereas R; is the max- 
imum k-th available rate, achievable in the absence of interference 
from any other pair. In Fig.3, we report the rate loss RP", for 
500 independent channel realizations, in case of three cooperat- 
ing MTIRT pairs, as a function (for each channels realization) of 
the ratio rkjlrklr. Experimentally, we have found that IWFA has 
always converged to the same value, regardless of conditions (5 )  
and the channels and the power budgets for each pair. Interest- 
ingly, the rate loss becomes negligible as rrj/rkx increases (e.g., 
as rirj/rbh > 10 the loss falls below 5%). 
In summary, in this paper we have shown how to find the optimal 
coding strategy for MT's in a wireless network, where each MT 
has an associated RT. The solution is optimal in the sense that it 
leads to a stable Nash equilibrium for a non-cooperative environ- 
ment, i.e. when each MT send its data only to the terminal, but 
it does not share any information with the other MT'r. In gen- 
eral, allowing for cooperations among the MT's, one could get an 
improvement and tend towards the optimal Pareto solutions. How- 

'The conditions required in [9] to guaranlee a unique Nash equilibrium 
hold uue in this case. 

20 1D 10 m e4 bl 
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Fig. 1. Optimal PSDs for the two links: IWFA (solid line), theo- 
retical values (stars) and interference from the other pair (dot and 
dashed line). 

Fig. 2. a)-b) Optimal P S D s  for the two links: IWFA (solid line) 
and interference from the other pair (dot and dashed line); c) rate 
vs. iteration index. 

ever, this would come at the cost of signalling among the MT's, 
so that the final balance in terms of rate is still an open prob- 
lem. We have shown under which conditions, depending on the 
transmit power, relative distance and channel transfer functions, 
the solution is unique. As expected, the conditions require that 
the inter-pair (MT-to-MT) distances be sufficiently greater than the 
intra-pair (MT-to-RT) distance. Nevertheless, we have observed, 
by simulation, that the proposed iterative water-filling algorithm 
has always converged, even when the conditions for the uniqueness 
did not hold true. The suggested strategy can be used in meshed 
or ad-hoc networks, where there is no infrastructure and each MT 
can communicate, in principle, with another MT, without passing 
through a BS, or in multihop networks. In the latter case, specific 
time slots have to be allocated for MT-to-RT links. Simultaneous 
exchanges among Q pairs are necessary, to avoid excessive rate 
losses. In practice, the number Q of pairs will result as a trade-off 
between the information rate loss due to interference, arising as Q 
increases, and the waste of resources occumng for low values of 
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6. APPENDIX 
We briefly outline the proof of the theorem, building on the gen- 
eral game theory formulation of [I I]. AS in [I I ] ,  we denote with 
xk E E”, the rnk-size vector that represents the strategy (power 
allocation) of the k-th player, where E m k  is the mk-dimensional 

Euclidean space; 6 is the set {I, 2 , .  . . , n} of the n players. We 
collect all the vectors 51; in x := [ X I , .  . . , xn]  E E”’, where 
E”’ = E“‘‘ x , , , E”” is the product space and m = Et=, mk. 
Because of the constraints, the overall admissible strategy x is 
assumed to belong to a subset R of E“. Denoting by &k the 
orthogonal projection of the set R onto E”*, we introduce also 
the set S := Q1 x Qz.. . x Qn 2 R. The payoff of the k-  
th player (its transmission rate) is given by the function &(e) : 
E”’ c 1, which depends on the strategies of aN players. We de- 
fine the weighted nonnegative sum of the payoff functions $;(.) 
as u ( x , r )  = Cr=ir i+ i (x ) ,  for each nonnegative vector r := 
1.1, . . .,..I E 1 T 3  and the associated pseudo-gradient vector 

T T g ( x , r )  = [rlV1$l (z), . . . , r ,V ,&(x)]  . We introduce the 
following 
Definition: The function u ( x ,  r )  : R c 1 is Diagonal Strict 
Concave (DSC) if, for every 2 0 ~ x 1  E R it holds that (xI - 
xo)’ (g(xo ,r )  - g ( z l r r ) )  > 0. As shown in 1111, a sufficient 
condition foro(x, r )  to beDSC is that the mxm matrix G ( x ,  r )+  
G ( x ,  r)’ be positive definite for x E R, where G ( x ,  r )  denotes 
the Jacobian of - g ( x ,  r )  with respect to x ,  defined as [G(x ,  .)I<, 
= - a g ; ( x , r ) / a z j ,  f o r i , ?  = 1 , .  . . m. The game iQ := {fi, R ,  
{ # k ) : = l ]  admits at least one stable NE if the follou,ing condi- 
tions hold m e  [12, Theorem 11: i) The set R is a convex, closed 
and bounded set; ii) Every payoff function $ k ( z )  is continuous 
i n x E S a n d c o n c a v e i n  Xk, foreach tixedvalueof ( X ~ , . . , X ~ - ~ ,  

xk+1, . . , x , ) .  TheNEisuniqueifthefunctiono(x,r)  isDSCfor 
some T = T > 0, and such an equilibrium point is independent 
of F. To prove our theorem, we start showing that our game $9, as 
defined in Section 3,jatisfies the conditions i) and ii). In fact, Y 
is a special case of Y, where the admissible strategy xi; of each 
player is restricted to a subset (call it Q k )  of E”*, that is onhogo- 
nal to the other constraint sets 8, with i # li. Using the following 
equivalences 6 - 12, EmL - IN V k  E 12, 4k(xj  - R i ( p )  = 

- 

[pl, . . . , p q ]  - x ,  it can be verified that the game 4 admits at 
least onestable NE. Indeed i) R = S = QI x ,  . . . , x Q n  where 
Qi = Qi = {P;  E 9 y l x f = l p i ( k )  5 PT} is the simplex 
in 9:, thus it is a convex, closed and bounded set. Since each 
Q; is convex, closed and bounded, it follows that R is also con- 
vex, closed and bounded 1131; ii) each function R k ( p )  is con- 
tinuous in p and concave with respect to  p k  for any fixed ( p , ,  
.. . > P k - l , P k + l , .  . .  3PQ): 
We provide now the sufficient conditions for the NE of the game 
(B to  be unique. Let G k ( p ,  r )  be the Q x Q matrix, defined& 

for i , j  = 1 , .  . . , Q and k = 0,.  . . , N - 1. Since there al- 
ways exists a permutation matrix T such that T C ( p , r ) T T  = 
diag{Gl(p,r), . . . , G N - I ( P , T ) }  121, the NE of the game (B is 
unique if the matrix Gk(p ,  r )  + G k ( p ,  r)’ is positive definite for 
every p ,  k E [0, N- 11 and some r > 0. Using Gerschgorin’s the- 
orem 1141, it may beprovedthatthematrix G k ( ~ , r ) + G ~ ( p , r ) ~  
is positive definite if 121 

for all i t [l, Q],k E [0, N - 11 and some r + 0. Introducing 
(8) in (9) and setting r; = r,, we obtain the conditions (4). 
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