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Abstract—This paper analyzes distributed asynchronous
power and rate control for wireless ad hoc networks. Importantly,
all network transmitters are considered to be independent of
any management infrastructure and to have the freedom to
choose their own arbitrary control rules, using as input only
information on local interference and achieved carrier signal-to-
interference ratio (CIR). Such an approach respects diverse user
preferences of on quality of service (QoS) and allows them to
adapt to local network conditions in contrast with conventional
cellular systems, whose users must follow centralized control
commands from serving base stations. For this purpose, we
develop a general non-cooperative game-theoretic framework and
characterize the resulting power and rate allocation dynamics in
terms of its convergence to network-wide acceptable equilibrium
states under stochastic communication channels. Chief among the
attractive features of our proposed framework is the fact that it
is developed in an entirely abstract way without any particular
technological or architectural assumptions, which are typically
made in related works. Numerical simulations prove the potential
of our approach to provide for fair, robust and comparably better
CIR allocation in ad hoc networks with varying topology and
user density.

Index Terms—Distributed, asynchronous, power and rate con-
trol, best-response, game theory, stochastic, convergence.

I. INTRODUCTION

THIS paper proposes a new approach to resources man-
agement in wireless networks, whereby innovative asyn-

chronous and distributive solutions for the transmit power and
rate control problem are introduced in the challenging context
of ad hoc networks with stochastic channels.

Ad hoc networks are characterized by the absence of any
preestablished (cellular) infrastructure, which predetermines
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their usage for e.g. disaster rescue or military applications [1].
However, the choice for independence from slowly deployable,
vulnerable and costly base stations requires their substitution
by new distributed control algorithms carried out by network
users themselves, whereby asynchronous solutions to the col-
lective decision-making are naturally preferred.

Besides the need for distributivity and asynchrony, what
makes the design of such control algorithms a difficult task is
also the fact that ad hoc network users are generally non-
cooperative and selfish. This holds especially in terms of
power/rate control - users tend to use higher power outputs
to overcome experienced inband interference from others and
maximize their immediate quality of service (QoS) disregard-
ing the mutually caused interference.

One approach to cutting this vicious circle in resource
management, which ultimately degrades the performance of
the entire ad hoc network, consists in solving general problems
of maximizing a minimum signal-to-interference and noise
ratio (SINR) [2] or satisfying target levels of such ratios
with minimum total transmit powers [3].

Inspired by works of Goodman et al., recent studies such
as [4]–[11] have tried to apply game theory to directly reflect
the selfishness of network users and also to solve the problem
of early algorithms’ possible divergence. Yet the primary
orientation of these works towards distributed maximization
(minimization) of QoS-based metrics leads to a strong ap-
plication dependence and, thus, to low practical universality
and/or mathematical generality of derived solutions.

In this paper, we use a best-response approach to distributed
power and rate control for multihop and multiband ad hoc
communications. Our system model assumes each active link
(concurrent single-hop transmissions) to periodically adjust,
in an individual and asynchronous manner, its transmit rate
and power based on so-called “rate assignment” and “best-
response” functions, using respectively the achieved carrier
signal-to-interference ratio (CIR) and interference level expe-
rienced at the receiver as their only input. Unconventionally,
we leave entirely up to links themselves how they concretely
define the two aforementioned update functions. This freedom
to flexibly express their time-varying QoS preferences or needs
then allows for dynamic adaptation of the resources to diverse
service requirements and unfavorable network conditions.

For this purpose, we develop a game-theoretic framework,
which (i) defines existence conditions for network-wide ac-
ceptable outcomes of the power/rate allocation, defined dis-
tributively by links throughout their private update functions
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and (ii) proposes update algorithms for asynchronous and
distributive search of such optimum solutions (iii) with robust
performance under stochastic channels. In contrast to previous
works, our analysis is (iv) carried out in a purely theoretical
way and (v) focusing on analytical clarity and simplicity
without limiting itself by unnecessary assumptions.

The paper is organized as follows. Section II defines the
system model. Section III then characterizes Nash equi-
libria within the system, whereas Section IV describes its
power/rate allocation dynamics. Algorithms for finding said
equilibrium states under stochastic channels assuming nonlin-
ear or linear/linearized best-response functions are specified
subsequently in Sections V and VI. The latter one moreover
defines a matched-up admission control for the special case of
linear/linearized best-response functions. Section VII presents
numerical results and comparisons upholding our theoretical
analysis, followed by conclusions drawn in Section VIII.

II. SYSTEM MODEL FOR AD HOC NETWORKS

A wireless ad hoc network using data relaying over mul-
tihop connections on multiple frequency bands can be ab-
stracted into a set of mutually orthogonal (non-interacting)
CDMA or TDMA networks [12]. Our system model thus
considers, with no loss of generality, the reduced problem of a
network with N simultaneously active one-hop links sharing a
single band. An active link is identified by a transmitter (TX)
and a receiver (RX), the latter experiencing interference from
concurrent transmissions pertaining to surrounding links in the
network.

The time-varying channel gain between the TX of link
j and the RX of link i is denoted by h̃ij and models all
radio wave propagation phenomena such as e.g. path loss,
shadowing or multipath fading.1 We assume that the values of
h̃ij are given by some stochastic function h̃ij (hij , t), whose
arguments are the deterministic mean channel gain hij and

time t and which is defined such that E

[
h̃ij

]
= hij .

The mean channel gain hij is proportional to path loss
due to physical energy dissipation of the transmitted signal
around the transmitter antenna, large-scale shadowing and
for simplicity also the spreading/processing gain of CDMA
transmissions. Assume therefore that the value of hij varies
only according to the geometrical distance between TXj and
RXi [13]. Then the variability rate of hij in time depends
exclusively on the speed, at which links change their locations
within the network, i.e., on network mobility. So if links i and
j are immobile, hij and hji become time-invariable constants.

In contrary, the random changes of the overall stochastic
channel gain h̃ij around the mean channel gain hij are
possibly much faster than network mobility. In the case of
Rayleigh fading channels, h̃ij is exponentially distributed.

As for the power and rate control in the network, the TX of
every link i ∈ I from the set I = {1, . . . , N} of all network
links updates its transmit power σi and rate �i periodically
with period T in time instances tki for integer k ∈ N using
update data calculated and fed back by the corresponding RX.
Time instances tki are considered to be asynchronous with the

1Additive noise is ignored as simultaneous transmissions in a shared band
are clearly interference-limited.

timing of other links j, i.e., tki �= tkj for a given k and any
i, j ∈ I and j �= i. The update period T is assumed to
be set small enough to assure the mean channel gain hij to
remain quasi-constant within T , but network transmitters have
no knowledge on the instantaneous values of randomizing h̃ij .

We think of the power/rate control process as of indi-
vidual decision-making by selfish links in a non-cooperative
environment. Updates of transmit power σi

(
tki

)
are calcu-

lated at the RX of link i based on the inband interference∑
j �=i hij

(
tki

)
σj

(
tki

)
from other links j �= i, experienced at

the RX in time tki , using so-called best-response (BR) function

βRX
i

(∑
j �=i hijσj , t

)
� 0 [14], [15], which formally de-

scribes the most desirable value of received power hiiσi at the
RX, necessary to overcome a given interference

∑
j �=i hijσj

in order to achieve an acceptable connection (e.g. a target
CIRi). A predefined initial transmit power σi

(
t0i

)
is used in

time t0i for starting the data transmission.2 Transmit data rate
�i

(
tki

)
is updated similarly based on so-called rate assignment

function RTX
i (CIRi, t) � 0, which assigns preferred data

rates to CIRi = hiiσi/
∑

j �=i hijσj , achieved at RXi.
Such system model requires each RXi to send two overhead

update data to TXi (e.g., together with data acknowledge-
ments) in order to let the TXi update σi and �i to values
calculated at the RXi. Although such overhead is undesirable,
note that it represents the minimum possible price for gaining
adaptive and distributed power/rate control in ad hoc networks.

To individualize among links, we allow each link to define
its own functions βRX

i and RTX
i independently from others

and based solely on its own private CIRi preferences or QoS
needs. Said functions are therefore discussed in a general form
and moreover assumed to be time-variant as defined hereafter.

To simplify the notation, we denote as −i the set I \ {i}
of links j other than link i, and introduce a vector/matrix
based notation with boldface symbols by defining σ (t) to be a
columnwise-oriented vector composed of power values σi (t)
at time t of all N network links i ∈ I . Symbols σ−i (t),
h−i (t) and h̃−i (t) represent analogically vectors composed
of N−1 elements σj (t), hij (t) and h̃ij (hij , t) for all j ∈ −i,
respectively.

We further define two transmitter-oriented BR functions -
βTX

i and β̃TX
i . The definition of βTX

i by

βTX
i (σ−i, t)

def
=

1

hii
βRX

i

⎛
⎝∑

j �=i

hijσj , t

⎞
⎠ =

1

hii
βRX

i

(
hT

−iσ−i, t
)

.

(1)
is based on the notion of the mean channel gain hij , whose

variations can links track down by a proper choice of T and
ignores the stochastic components in the overall channel gain
h̃ij , “superposed” over hij .

The notion of βTX
i is sufficient for system model formula-

tion and a general description of the power control dynamics
in the network. However, when discussing the effects of fading
h̃ij on power allocation later on, a more realistic TX-oriented
BR function β̃TX

i will be needed, whose definition by

β̃TX
i (σ−i, t)

def=
1

h̃ii

β̃RX
i

(
h̃T
−iσ−i, t

)
(2)

2Conditions for global convergence to an equilibrium state are discussed
later, whereby in such a case σi

(
t0i

)
can be chosen arbitrarily.
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substitutes the deterministic mean channel gains hij in βTX
i

by the stochastic ones h̃ij .
Analogically to the relation of h̃ij and hij , the deterministic

BR function βTX
i represents the “mean” of the stochastic BR

function β̃TX
i , i.e., βTX

i corresponds to E

[
β̃TX

i

]
. The symbol

˜in βTX
i emphasizes the stochastic nature of β̃TX

i .
Having established βTX

i and RTX
i , we can from now on

work only with TX-oriented system functions, and omit for
clarity indexes TX (similarly, the dependency of σi (t), hij (t),
h̃ij (hij , t), βi (σ−i, t) on their arguments will be emphasized
only if necessary, otherwise purely symbolic notation σi, hij ,
h̃ij , βi will be preferred). The system model can then be
formalized as a non-cooperative power allocation game [16]:

Definition 1: Denote G = {I , σi, βi} a strategic game
defined by the following three elements:

1) set I of N active links i (game players), simultaneously
accessing shared frequency band;

2) transmit power σi ∈ Σi of link i (game strategy), where
its power range Σi is a subset of positive real numbers
R

1+;
3) BR function βi of link i (game playing rules), which

assigns a power σi from the power range Σi to each
power vector σ−i from the power profile Σ−i, wherein
Σ−i with elements σ−i represents the power profile of
opponent links −i, given by the Cartesian product of
Σj for all j ∈ −i, and Σ with elements σ denotes the
entire power profile of the power control game G , given
by the Cartesian product of Σi for all i ∈ I . �

Such a system model definition reflects the fact that all
network links take independently their best available actions
defined by βi and Ri (“best responses”) in order to pursue
their own individual objectives as expressed by the particular
choice of βi and Ri. What makes this a strategic game is
that what is best for one link depends in general upon actions
of other links, because links act based on the evaluation of
mutual interference and related CIR.

Both transmit rate �i and rate assignment function Ri do not
constitute a part of the game-theoretic system model formula-
tion, because transmit rates �i can be uniquely determined
herein as �i = Ri (CIRi) = Ri

(
hiiβi (σ−i) /hT

−iσ−i

)
.

Thus, reaching a network-wide equilibrium in the βi-driven
power control game also implies stabilization of the rate
adjustment process, irrespectively of the fact whether link i
subordinates its choice of βi to its primary demands on Ri

(e.g., a car user with good energetic supplies) or if in contrary
Ri is derived based on transmit power restrictions of link i
(e.g., a power concerned user).

III. NASH EQUILIBRIUM AS POWER CONTROL GAME

OUTCOME

Having formalized the system model as a dynamic power
control game G , we proceed with defining desirable game
outcomes and analyzing conditions for their existence in order
to examine the characteristics of βi that would allow links to
reach some mutually acceptable solution to their most likely
conflicting resources allocation interests.

The outcome of game G is preferably a network-wide ac-
ceptable state, characterized by such an allocation of transmit

powers from which none of the concurrently transmitting links
has an incentive to unilaterally deviate, i.e., change its transmit
power, while other active links keep their powers unchanged.

Such an optimum outcome is formally a set of allocated
powers σ̂, characterized by an ideal interference adaptation
of all links such that σ̂i = βi (σ̂−i, t) ∀i ∈ I , which
advantageously corresponds to the notion of Nash equilibrium
[16]. Evidently, if a new link becomes active or conversely
terminates its transmission, a new equilibrium state has to be
found, to dynamically reflect the changed network configura-
tion and resulting variations in local interference.

In order to allow links to dynamically adapt not only to
changing interference, but also to newly emerging network
conditions and corresponding variations in service preferences,
we allow them to vary in time the shape of their BR functions
βi as follows:3

Assumption 1: [On Short Term Time-Invariance of βi] As-
sume that (i) the period T of power adaptations in the game G
is much smaller that the topological changes in the network.
Furthermore, if power updates in the game G converge for
given βis to Nash equilibrium σ̂, then (ii) the intersection of
time intervals of all links, over which βis of all links remain
invariant, is larger than the time scale for reaching σ̂. �

The first requirement on power adjustments to be faster than
topological changes concerns the variability of βi (h−i, t) due
to fluctuations of hij under mobility. It in fact assures that
channel gains hij remain quasi-constant on the evolution time
scale of G and power adaptations can then easily track down
the effects of link mobility.

The second requirement limits the frequency at which links
can freely redefine their βi (h−i, t), i.e., limits the dependence
of βi on its second argument - time t. The purpose is to
guarantee slow time-variance or temporary invariance of βi

and provide so links with enough time to achieve the Nash
equilibrium on an appropriate time scale. Distributively veri-
fiable conditions of power control convergence are discussed
hereafter, whereby reaching σ̂ results in an easily detectable
usage of a constant transmit power σ̂i, thus the assumption
make sense in the light of the upcoming text.

As a whole, the assumption is necessary for characterizing
conditions for existence of Nash equilibria in G and guarantees
the predictability of the game outcome. It postulates links to
be rational players in the sense that their behavior constitutes
rational optimizing behavior and they do not randomize G e.g.
by egoistic alternations of once chosen βi.

Based on the premise, we can proceed with examining how
to assure the general existence of Nash equilibrium/equilibria
in its power profile Σ by making some additional assumptions
on βi. It shows up that for this purpose it is necessary but
sufficient to require the continuity of βi in its argument σ−i

on a compact and convex power profile Σ−i:
Theorem 1: Assume a non-cooperative power control game

G = {I , σi, βi} as defined in Definition 1. Then if βi is
a continuous function in a non-empty compact and convex
power range Σi for all i ∈ I , the game G admits at least one
Nash equilibrium such that σ̂i = βi (σ̂−i, t). �

3In contrary to βi, Ri can vary in time arbitrarily as long as its technical
compatibility with βi is ensured, because data rate choice of one link does
not directly affect the transmit power decisions of other links in the game I .
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Proof: If the power range Σi of each link i is a non-
empty compact and convex set of R

1+, then their Cartesian
products Σ and Σ−i have the same properties.

Define now a joint BR function β as a Cartesian product of
βi for all i ∈ I and substitute formally its argument σ−i ∈
Σ−i by σ ∈ Σ, i.e., extend the domain set of β from Σ−i to
Σ by formally including also Σi, in order to be able to work
with β in the context of the entire power profile Σ.

Using Brouwer’s fixed point theorem [14] as a special case
of Kakutani’s theorem [16], one can state that if β : Σ → Σ is
a continuous function from a non-empty, compact and convex
set Σ ⊂ R

N+ into itself, there exists a fixed point σ̂ ∈ Σ of
β such that σ̂ = β (σ̂, t), i.e., G admits Nash equilibrium.

Note from the above proof the theoretical necessity of the
continuity (Assumption 3). If βi was only piecewise continu-
ous, then there might not be a point such that σ̂i = βi (σ̂−i, t),
i.e., no intersection of βi (σ−i, t) with the line σi. This
means that is not possible to prove the general existence of
Nash equilibria for discontinuous or only piecewise continuous
BR functions. Consequently, the next two assumptions are
incorporated into the system model to assure existence of at
least one equilibrium σ̂:

Assumption 2: [On Power Ranges Σi] Let the power range
Σi of each link i be a non-empty, compact and convex set of
positive real numbers R

1+ for all i ∈ I . �
Assumption 3: [On Continuity of BR Functions βi] Let βi

be a continuous function in Σi for all i ∈ I . �4

Knowing conditions for existence of Nash equilibria in
an ad hoc network with distributively defined power/rate
control, one may be tempted to proceed with studying the
system of discrete time difference equations σi

(
tki + T

)
=

βi

(
σ−i

(
tki

)
, tki

)
with the perspective of determining condi-

tions, under which the periodical power updates converge to
optimum power vector σ̂.

However, fading effects characteristic for mobile wireless
environment can cause significant variations of the channel
gains h̃ij in time and, consequently, high variability of local
inband interference h̃T

−iσ−i within the period T .
Calculating power updates based on βi with fluctuating

interference values as input then in fact corresponds to the
usage of stochastic BR function β̃i as defined in (2) - instead
of the originally envisaged deterministic “mean” BR function
βi defined by (1). The occurrence of large fluctuations of σi

then degrades the performance of the network [17].
In ergodic channels (e.g., fast fading channels), the ran-

domness of channel gains h̃ij , that is to say of interference
h̃T
−iσ−i, can be removed by simple averaging of interference

measurements collected during each update period T , because
E

[
h̃T
−iσ−i

]
= E

[
h̃T
−i

]
σ−i = hT

−iσ−i.

This way of estimating the mean interference value hT
−iσ−i

is however not possible in non-ergodic channels (e.g., slow
fading channels), whose short time scale average of h̃ij is
not equal to the overall average hij . Thus, a more advanced
practical implementation of link transmit power updates is
needed for the non-ergodic case.

4As for practical discrete systems, our results for continuous BR functions
are still applicable with a near optimal performance by operating on discrete
levels, which are the nearest to optimal continuous solutions.

IV. BEST-RESPONSE POWER CONTROL DYNAMICS

Observe from the proof of Theorem 1 that the search for
Nash equilibrium σ̂ = β (σ̂, t) is equivalent to finding a zero
root of an auxiliary function f (σ, t) = β (σ, t) − σ with β
given by the Cartesian product of βi on Σ. Knowing that the
usage of β under stochastic channel gains h̃ij corresponds to
the usage of β̃, we can model power/rate control in fading
channels as a zero root search problem for a “noisy” function
f̃ = β̃ − σ with β̃ composed of components as defined in
(2).

To distributively implement such stochastic search, one can
employ an iterative algorithm of SA class. These algorithms
are known to be the most suitable for this kind of task
[18], [19]. Their general form has been proposed in [20] and
importantly allows every link i to distributively calculate its
updates of σi based on

σi (t + T ) = σi (t) + ak
i f̃i (σ−i (t) , t) , (3)

having as input only consecutive observations of the inter-
ference h̃T

−iσ−i as required by the system model, whereby
ak

i > 0 is the algorithmic step size and f̃i (σ−i, t) =
β̃i (σ−i, t) − σi with noisy β̃i defined in (2) denotes the i-
th component of f̃ . Yet the algorithm undesirably requires all
power updates to be performed simultaneously, i.e., a network-
wide synchronization, whereby it is typically assumed that
ak

i = ak
j for any i, j ∈ I .

We propose more elaborate algorithms for power updates at
asynchronous time instants tki in Sections V and VI. To derive
their convergence conditions, we first need to characterize the
driving force of SA class algorithms, that is to say of the
evolutionary dynamics of σ, during the search for the Nash
equilibrium σ̂ of the game G based on (3) with given BR
functions. It shows up that the dynamics is, for large k, directly
related by the Arzelà-Ascoli theorem [19] to the asymptotical
properties of a standard law of motion [15], governed by N
coupled first-order scalar differential equations:

dσ(t)
dt = β (σ (t) , t)

σ
(
t0

)
= σ0.

(4)

The continuous model (4) is advantageously a deterministic
one thanks to the inherent property of SA algorithms to
average out channel fluctuations. Moreover, its parameters
such as importantly the channel gains hij are constant as a
consequence of Assumption 1 and the assumption of link mo-
bility to be much larger than that of the power/rate adaptation.

It is clear that in order to be able to predict the future
states σ of the algorithm (3) (and thus its convergence) for
some initial σ0, there must exist a unique solution to (4), i.e.,
a continuous function σ :

[
t0, t1

] → R
N+ such that dσ(t)

dt is
defined and dσ(t)

dt = β (σ (t) , t) for all t ∈ [
t0, t1

]
.

The continuity on βi (Assumption 3) must be therefore
tightened by requiring them to also have limited first derivative
in σ. Then the following theorem holds.

Theorem 2: Assume a short-term variant β (σ, t) as defined
in Assumption 1 such that it is piecewise continuous in t and
satisfies the Lipschitz condition ‖β (σ, t)−β (τ , t)‖ � L‖σ−
τ‖ for some L > 0, ∀σ, τ ∈ Σ and ∀t ∈ [

t0, t1
]
. Then the
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power control dynamics dσ(t)
dt = β (σ, t) with σ

(
t0

)
= σ0

has a unique solution over the time interval
[
t0, t1

]
. �

Proof is available in books on ordinary differential equations.
Importantly, it holds that the unique solution depends con-

tinuously on the initial state σ
(
t0

)
and parameters of β

under the above conditions, which gives us the possibility
to arbitrarily select σi

(
t0i

)
for all links i ∈ I , and tolerate

continuous changes of mean channel gains hij in β as an
effect of link mobility.

Having obtained a power control game with analytically
predictable dynamics, we proceed with defining convergence
of the dynamics (4) to an isolated Nash equilibrium σ̂ from
its neighborhood and consequently analyze the convergence
conditions.

As power ranges are subsets of Euclidean space, consider,
without loss of generality, a shift of σ̂ to the origin of R

N so
that σ̂ = 0. Then the notion of dynamics (4) converging to an
equilibrium point σ̂ from its neighborhood can be equivalently
referred to as the stability of σ̂ and conveniently defined as:

Definition 2: An equilibrium σ̂ is
• stable, if for each ξ > 0 there exists δ = δ (ξ) > 0 such

that ‖σ (0)‖ < δ implies ‖σ (t)‖ < ξ for all t � 0;
• asymptotically stable, if it is stable and δ can be chosen

such that ‖σ (0)‖ < δ implies limt→∞ σ (t) = 0;
• unstable, if it is not stable. �
According to this definition, the stability of σ̂ implies that

after some time σ remains only in a close neighborhood of
σ̂, called the region of stability whose size is arbitrarily given
by some function of ξ. In the case of asymptotical stability,
the close neighborhood is shrinking in time and reduces to the
equilibrium point itself as time goes to infinity. Analogically,
instability of the equilibrium is equivalent to divergence of the
power control process.

When finding ways for determining the stability of σ̂, we
avoid the intuitive search for specific analytical solutions of
(4) as this approach limits itself by assuming a particular
shape of β, which makes it application-dependent, and rather
take advantage of Lyapunov indirect analysis [21]. Its main
result gives general sufficient (but not necessary) stability
conditions:

Theorem 3 (Lyapunov stability): Consider power control
dynamics dσ(t)

dt = β (σ) with an equilibrium point σ̂ = 0
in the origin. Let D ⊂ R

N be a domain containing the
equilibrium σ̂ = 0. Then, if there exists a scalar continuously
differentiable function v (σ) : D → R

1 such that v (0) = 0
and v (σ) > 0 in D\0, and satisfying also (i) v̇ (σ) � 0 in D
or (ii) v̇ (σ) < 0 in D\0; then the equilibrium point σ̂ in the
origin is (i) stable or (ii) asymptotically stable, respectively,
whereby v̇ denotes the derivative of v along the trajectories β
of (4), i.e., v̇ =

∑
i

∂v
∂σi

dσi

dt =
∑

i
∂v
∂σi

βi = gradvTβ. �
In other words, the equilibrium is (asymptotically) stable,

if there exists a continuously differentiable positive definite
function v so that v̇ is negative semidefinite (definite). The
Barbashin-Krasovskii theorem [21] extends this results by
stating global asymptotical stability if v is positive definite,
v̇ is negative definite ∀σ �= 0 and ‖σ‖ → ∞ ⇒ v → ∞.

Thus, if v approaches infinity when ‖σ‖ → ∞, global
convergence to a unique equilibrium follows without assuming
further restrictions on β. This is an important observation as

Theorem 1 does not guarantee the uniqueness of σ̂, but only its
existence. Hence, if the BR power control converges globally
to some isolated equilibrium, i.e., the domain D is the whole
power profile Σ, then by contradiction there cannot exist
another isolated equilibrium. As such, unwanted oscillations
between several equilibria can be avoided.

A general method for generating Lyapunov functions for
checking the power and rate control stability through Theorem
3 consists in Schultz-Gibson variable gradient method [22].

V. ASYNCHRONOUS CONVERGENCE UNDER STOCHASTIC

CHANNELS

A. Proposed Algorithm for Solving Power/Rate Control Game

This section introduces an SA algorithm, which is more
suitable for solving the power control game G than the one
presented in (3) and builds up on the previously established
facts. It implements asynchronous iterative search for one of
the previously established, but potentially multiple Nash equi-
libria in G under the influence of stochastic communication
channels h̃ij , which moreover allows for link-level transmit
power resets if the estimate σi of the equilibrium component
σ̂i departs at some iteration out of the predefined range Σi.

Importantly, the requirements for assuring convergence of
the proposed algorithm are defined (except of standard noise
and stepsize conditions) based solely on the customized defini-
tion of link (noisy) BR functions or, more precisely, based on
the existence of a Lyapunov function for the corresponding
dynamics (4) as stated in Theorem 3. The redundancy of
knowing the exact form of the Lyapunov function gives our
approach a new potential for deriving distributed admission
control schemes for assuring the network power and rate
control stability with respect to the distributively defined
and time-varying BR functions. An exemplary scheme is
developed in Section VI for the linear/linearized case.

The proposed algorithm is defined in accordance with the
system model by periodical (period T ) and asynchronous
transmit power updates in times tki , whereby all active links
start with some initial transmit power σi

(
t0i

)
and use the

fluctuating interference information h̃−i

(
tki

)T
σ−i

(
tki

)
given

by the current value of the asynchronously updated transmit
powers σ−i

(
tki

)
to update their powers with respect to their

BR functions using the formula

σi

(
tki + T

)
= L

[
σi

(
tki

)
+ ak

i f̃i

(
σ−i

(
tki

)
, tki

)]
+(1 − L)σ∗

i ,

(5)
where ak

i denotes the algorithmic step size of link i and
f̃i (σ−i, t) = β̃i (σ−i, t) − σi (t) with noisy β̃i defined in
(2) denotes the i-th component of the auxiliary function
f̃ (σ, t) = β̃ (σ, t) − σ with Nash equilibrium (equilibria)
σ̂ as its zero root(s).

The logical indicator function L in (5) is equal to 1 if the
candidate value σi

(
tki + T

)
= σi

(
tki

)
+ ak

i f̃i

(
σ−i

(
tki

)
, tki

)
of the estimated equilibrium component σ̂i at time tki +T exits
from the predefined transmit power range Σi, containing by
Assumption 2, 3 at least one Nash equilibrium, and becomes 0
otherwise. In other words, if

(
σi

(
tki

)
+ ak

i f̃i

(
σ−i

(
tki

))) ∈
Σi, the value of σi

(
tki + T

)
is pulled back to some predeter-

mined initial power σ∗
i ∈ Σi, from which the iterative search
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is restarted. For the moment, we assume that if some link i
resets its power to σ∗

i in tki , other links j ∈ −i join it by
switching to σ∗

j in tkj too.

B. Convergence Statement

In order to state the convergence conditions of the algorithm
(5) in the next theorem, we make the following assumption
on the fluctuating nature of β̃i (respective on f̃i), using the
notion of canonical additive noise εi defined by εi (t) =
β̃i (σ−i, t) − βi (σ−i, t), i.e., as the difference between the
BR function, comprising channel gains h̃−i with randomizing
effects, namely β̃i, and the “mean” βi, considering only the
deterministic propagation model based on mean gains h−i.

Assumption 4: Assume for any i ∈ I , any convergent
subsequence {σi (tni )} of {σi

(
tki

)} and any θk ∈ [0, θ] that

lim sup
θ→0

lim sup
k→∞

1
θ

∣∣∣∣∣∣

y(n,θk)∧r(i,gn
i +1)∑

s=n

as
i εi (tsi )

∣∣∣∣∣∣
= 0, (6)

where “∧” denotes the minimum between y (n, θk) = inf{l �
n,

∑l
s=n as

i > θk} and r (i, l) = inf{k > 0, gk
i = l}, whereby

gk
i is defined by gk+1

i = gk
i + (1 − L) with g0

i = 0 ∀i and L

defined as in (5). �
This represents a standard condition on noise εi for SA

algorithms (in fact the minimum possible one) and naturally
assumes εi to be bounded to allow its averaging out by a
suitably small (decreasing) step size ak

i . The above formula-
tion of the noise condition is not the only possible one. For
instance, see [23] for other equivalent formulations or [18] for
therefrom resulting conditions on stochastic processes h̃ij for
given hij .

Furthermore, standard restrictions on the stepsize in SA
algorithms are assumed, whereby network links are allowed
to use their own stepsize to respect their independent status in
an ad hoc network.

Assumption 5: Assume that each link i ∈ I iterates the
recursions (5) with its own step size ak

i such that ak
i > 0;

ak
i

k→∞−−−−→ 0;
∑∞

k=0 ak
i = ∞ and

0 < cmin
i � lim inf

k→∞
ak

i

ak
j �=i

� lim sup
k→∞

ak
i

ak
j �=i

� cmax
i a.s. (7)

for some cmin
i and cmax

i and ∀i. �
Then the convergence of (5) can be stated as follows:

Theorem 4: Assume a non-cooperative power control game
G = {I , σi, βi} as defined in Definition 1 and suppose β to
be given by a finite5 sequence {βK} of totally Kmax functions
βK : Σ → Σ, being for all integers K ∈ {1, . . . , Kmax}
short-term invariant, as stated in Assumption 1, and globally
Lipschitz, as required in Theorem 2, on a non-empty compact
and convex power profile Σ ⊂ R

N+ (Assumption 2).
Let the transmit power σi

(
tki

)
of link i be periodically

updated with period T at time instances tki for integer k ∈ N

based on (5) assuming some initial power σi

(
t0i

)
< max [Σi]

and reset power σ∗
i < max [Σi], whereby each link i defines

its own step size ak
i according to Assumption 5. Furthermore,

assume that the set JK = {σ̂ ∈ Σ : fK (σ̂, t) = 0} of

5Infinite sequences can also be assumed after some theorem modifications.

Nash equilibria σ̂ in G established by Theorem 1 for each
βK , i.e., the set of zero root(s) of fK (σ, t) = βK (σ, t)−σ,
is a finite set of isolated points and there exists a set {vK}
of Kmax scalar twice continuously differentiable functions
vK : Σ → R

1 such that for all respective σ ∈ Σ \ JK

sup
ci∈[cmin

i ,cmax
i ]

[(
fK

)T
diag (1, c2, . . . , cN ) gradvK

]
< 0 (8)

(diag stands for diagonal matrix). Then, if it is true that

vK (σ∗) < inf
σ:σi=max[Σi];σj �=i�max[Σj �=i]

vK (σ)∀K (9)

together with the Assumption 4 on noise εi, the iterations
σ

(
tk

)
of algorithm (5) tend to JK for respective β̃K , whereby

dist
[
σ

(
tk

)
, JKmax

]
k→∞−−−−→ 0 a.s. (10)

for dist
[
σ

(
tk

)
, JK

]
= inf{‖σ (

tk
) − σ̂‖ ∀σ̂ ∈ JK}. �

Proof: The theorem formulation guarantees by Theorem 1
the existence of at least one Nash equilibrium σ̂ in the power
control game G , whereby in order to assure the convergence
to σ̂ it requires for each βK the predictability of the corre-
sponding dynamics (4) in the sense of Theorem 2 and also
its stability throughout the existence of respective Lyapunov
functions vK as in Theorem 3.

Knowing that JK ⊂ Σ, it is meaningful to restrict the
search for σ̂ only to power profile Σ of G by using the
function L in (5) for truncating equilibrium transmit power
estimates σi

(
tki

)
to some σ∗

i < max [Σi] if their values
exceed the corresponding power range Σi. Truncating the
sequence {σ (

tk
)} by L on fixed truncation bounds max{Σi}

then result in boundedness of the sequence, which implies
by Bolzano-Weierstrass theorem the existence of a convergent
subsequence in the sequence σ

(
tk

)
.

This fact allows us to use Lemma 5.6.3 from [18] stating
that if condition (9) holds, then the values vK

(
σ

(
tk

))
of

Lyapunov functions vK , calculated for the iterations σ
(
tk

)
of (5) with given β̃K in time instances tki ∀i ∈ I , cannot
cross infinitely many times some interval [γ1, γ2] such that
dist

[
[γ1, γ2] , v(JK)

]
> 0 for some γ1 < γ2, or converge to

γ1 if γ1 = γ2.
Hence, the algorithm (5) performs only a finite number of

truncations during its iterations and evolves, for a sufficiently
large k, as the Robbins-Monro algorithm (3). But then as-
suming the standard noise condition from Assumption 4 and
stepsize restriction from Assumption 5, it follows by [18] that
dist

[
σ

(
tk

)
, cls{JK}] k→∞−−−−→ 0 a.s.. The symbol cls{JK}

denotes the closure of JK on Σ, i.e., JK plus its limit points.
Since the Euclidean space R

N is a topological space of T1
kind having its topology induced by the Euclidean metric,
any two distinct points in Σ can be separated. Thus the
finite set Jk has no limit points and its closure cls{JK} is
equal to JK itself. The iterations of (5) thus tend to JK and
dist

[
σ

(
tk

)
, JKmax] k→∞−−−−→ 0 a.s..

It should be mentioned as a concluding remark that the
usage of said Lemma requires three conditions to be fulfilled:
(i) the measurability and uniform local boundedness of fK ,
which is evidently true; (ii) nowhere dense functions vK in
JK , which holds as JK are finite sets and vK are continuous
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thanks to their continuous differentiability; (iii) satisfaction
of limtk

i →∞
∑

εi

(
tki

)
ak

i = 0 a.s., which follows as a con-

sequence of ak
i

k→∞−−−−→ 0, because the delays between power
updates of links j and i at time k are bounded by T .

Lastly, although Lemma 5.6.3 uses spherical truncation
limits, our usage of rectangular bounds max{Σi} has no effect
on the proof. The proof remains unchanged if continuous time-
variance of fK is assumed too.

C. Design Issues

We can clearly see that the above convergence conditions
for algorithm (5) do not exceed restrictions on G from
previous sections - apart of verifying Assumption 4 on noise εi

or h̃ij for some particular channel type of interest. Moreover,
it is apparent from condition (9) that Lyapunov functions vK

in Theorem 4 do not need to be non-negative as in the case
of v in Theorem 3.

Note, however, that assuring the existence of positive defi-
nite functions vK not only automatically implies satisfaction
of (9), but importantly allows to implement partial iteration
resets of (5). To be more specific, full network-wide resets
were assumed until now, i.e., if some links i exceeds Σi

with its estimate of σ̂i in time tki and resets σi

(
tki

)
to σ∗

i ,
other links −i join it by switching to σ∗

−i. Yet if vK > 0,
the condition (9) holds for any σ∗ ∈ Σ. So also, for σ∗

defined by components σ∗
i and σj

(
tki

) ∀j ∈ −i whose usage
corresponds, on the network level, to a situation where link i
resets its iterations of (5), but other links ignore this fact and
do not alter their own iteration by in any way, i.e., to what we
called a partial iteration reset. Finding vK > 0 thus removes
the undesirable overhead for implementing coordinated full
network-wide resets in the search of σ̂.

Another important observation is that even if temporary
instabilities arise during the usage of the proposed SA algo-
rithm, the algorithm (5) converges on the whole to JK , that
is to say to JKmax

. Understandably, such instabilities have
no benefit for the network power control performance and
should be avoided to promote energetical efficiency of ongoing
transmissions.

Note also that the algorithmic step size ak
i attains progres-

sively decreasing values (e.g. ak
i = 1/k), disregarding the

dynamic changes in the network, so the speed of convergence
to time-variant equilibria can be different in different stages
of the power control process. This is due to the fact that the
magnitude of ak

i plays a key role in a well-known tradeoff
between the algorithmic convergence rate and error distance
of the allocated power vector from the optimum equilibrium
vector. In the early stages of the equilibrium search, a bigger
step size implies generally speaking faster convergence with
lower precision of the equilibrium estimate, whereas a smaller
step size allows reaching the equilibrium without e.g. oscil-
lations around it, but with slower convergence rate (detailed
numerical simulations, related to said stepsize choice trade-off,
can be found e.g. in [24]).

In this context, it was proposed e.g. by [17], [19] to use a
constant step size rather than a decreasing time-variant one to
provide SA algorithms with a balanced long-term performance

in terms of tracking down time-varying equilibria or respond-
ing to network admission events, which also cause equilibrium
time-variance. Such an approach, however, sacrifices the above
shown almost sure convergence to equilibrium sets JK and
offers only convergence in distribution [19]. It is therefore
more reasonable to implement flexible network-wide resets of
ak

i , using e.g. a binary “reset” tone on a broadcasting signaling
frequency, to handle significant network changes.

An interesting design alternative of algorithm (5) consists
in averaging of the estimate sequence σi

(
tki

)
at each link

i [25] and using the averaged output values for determining
actual transmit powers [26]. It has been shown [25] that the
sequence of simple arithmetic averages of powers allocated by
(5) converges to the desired equilibrium σ̂ with optimal rate,
whereby under some appropriate assumptions, the choice of ak

i

does not affect this rate. Importantly, averaging allows the use
of a step size that decays on a slower pace than the classical
choice of O (1/k). Implementation details are studied in [26]
(see references therein for advanced averaging techniques).

VI. DISTRIBUTED MEDIUM ACCESS CONTROL FOR

NETWORKS WITH LINEAR/LINEARIZED BR FUNCTIONS

A. Proposed Algorithm for Linear Power/Rate Control

This section proposes a distributed and asynchronous ad-
mission control scheme, whose operation on the network data
link layer automatically implies convergence to the previously
presented SA algorithm, running on the underlying physical
layer.

For the purpose of its derivation, we assume a sys-
tem model with linear or linearized BR functions in the
form βRX

i (σ−i, t) = Bi + Aih
T
−iσ−i for some possibly

time-variant Bi ∈ R
1+ and Ai ∈ R

1. Then βTX
i =(

Bi + Aih
T
−iσ−i

)
/hii and β̃TX

i =
(
Bi + Aih̃

T
−iσ−i

)
/h̃ii.

In the case of approximating a nonlinear BR function βTX

by a linear one, we assume continuous differentiability of the
nonlinear βTX. We will again work with β̃TX

i only and thus
drop the index TX for simplicity as before.

Two significant power/rate control schemes can be success-
fully modeled in such a way. Firstly, if Bi > 0 and Ai < 0,
then the preferences of each link on the desirable CIRi

decrease inverse proportionally with increasing interference,
representing typically the desire of high-power high-speed
transmissions for low inband interference and rather slow
(but energetically not demanding) transmissions for higher
interference.

If the interference level exceeds the threshold Bi/Ai,
for which βi (Bi/Ai, t) = 0, link i becomes passive and
waits for better interference conditions while saving its
power budget. This implements a receiver-based admission
control of CSMA/CA kind (Carrier Sensing Multiple Ac-
cess/Collision Avoidance), which can be combined with the
standard transmitter-based CSMA/CA, using the evaluation of
a maximum interference threshold.

Secondly, if Bi = 0 and Ai > 0, the system model
represents links with fixed target CIRs similarly to [3].

The next theorem extends the results of the previous section
and states admission control conditions for assuring conver-
gent asynchronous power/rate control with linear or linearized
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BR functions to a unique Nash equilibrium under the effects
of channel fluctuations:

Theorem 5: Assume a non-cooperative power control game
G = {I , σi, βi} as defined in Definition 1 and suppose
β to be given by a finite sequence {βK} of totally Kmax

functions βK , whose i-th component βK
i is a short-term

invariant (Assumption 1) and linear BR function βK
i =(

Bi + Ai

∑
j �=i hijσj

)
/hii in a non-empty compact and con-

vex power range Σi ⊂ R
1+ (Assumption 2) for all i ∈ I and

integer K ∈ {1, . . . , Kmax}.
Let the transmit power σi

(
tki

)
of link i be periodically

updated with period T at time instances tki for integer k ∈ N

based on (5) assuming some initial power σi

(
t0i

)
< max [Σi]

and reset power σ∗
i < max [Σi], whereby each link i defines

its own step size ak
i according to Assumption 5.

Then if all links i ∈ I satisfy for all K � Kmax

hii > |Ai|
∑
j �=i

hij , (11)

there exists a unique Nash equilibrium σ̂K for each βK in
the power profile R

N . If it moreover holds that σ̂K ∈ Σ ⊂
R

N+ ∀K and Assumptions 4 and 5 on noise εi and step
size ak

i are true,6 the iteration resets of (5) at link i based
on function L can be performed independently from other
links −i, whereby σ

(
tk

)
tend to JK for respective β̃K with∥∥σ

(
tk

) − σ̂Kmax∥∥ k→∞−−−−→ 0 a.s.. �
Proof: The above theorem states in comparison with The-

orem 4 that the linear nature of βK and condition (11) assure
(i) unique Nash equilibrium σ̂K for each βK in R

N and, if
σ̂K ∈ Σ∀K , imply together with the standard Assumptions 4
and 5 on noise εi and step size ak

i the satisfaction of all main
convergence conditions of Theorem 4: (ii) βK being globally
Lipschitz functions; (iii) JK being sets of isolated points; (iv)
existence of Lyapunov functions vK for assuring algorithmic
stability; and (v) condition (9) on σ∗ while allowing partial
resets. So the proof must validate all these five statements.

To simplify the representation of βK , we define BK to be
a vector with components BK

i /hii ∀i ∈ I , and AK to be a
matrix defined by AK

ii = 0 and AK
ij = AK

i hij / hii for j �= i
and i ∈ I . Then βK = BK + AKσ. Define also E to be
N -by-N unit matrix.

The elements of both BK and AK can be practically
assumed to be bounded in time, so βK fulfills the global Lip-
schitz condition on R

N , given that ‖βK (σ, t)−βK (τ , t)‖ =
‖AKσ −AKτ‖ = ‖AK‖ · ‖σ − τ‖, which proves point (ii).

As for point (i) and (iii), assume for the moment that they
hold by supposing that each JK contains only one unique
Nash equilibrium σ̂K , satisfying σ̂K = BK + AK σ̂K . Then
σ̂K = − (

AK − E
)−1

BK , which implies invertibility of the
matrix

(
AK − E

)
.

This premise allows us to proceed with showing that the
theorem formulation assures the existence of Lyapunov func-
tions vK for each fK = βK −σ = BK +

(
AK − E

)
σ such

that condition (8) is satisfied. Perform first with no loss of gen-
erality a substitution of σ in G by s = σ− σ̂K , which results
in a coordinate shift of G into the origin of R

N and yields

6See [27] for a similar noise condition applicable to linear G too.

ŝK = 0 and fK (s−i, t) = BK +
(
AK − E

)
(s + σ̂) =(

AK − E
)
s.

Suppose now a candidate Lyapunov function vK in a
polynomial form vK = σTV Kσ for some N -by-N matrix
V K . Then the derivative of vK along the trajectories
fK (s−i, t) in the shifted system, scaled component-wise by
{1, c2, . . . , cN} as defined in Theorem 4, is given in the present
case of linear BR functions by v̇ =

(
fK

)T
C gradvK =

sT
[
V K

(
CAK − C

)
+

(
CAK − C

)T
V K

]
s

def=
−sTW Ks, where C is diagonal matrix given by
C = diag (1, c2, . . . , cN ).

Based on this derivation, one can see that each matrix V K

must satisfy for some chosen W K the equation

V K
(
CAK − C

)
+

(
CAK − C

)T
V K = −W K , (12)

to meet the requirements of (8). It is a known result (e.g.
[28]) that there exists a positive definite symmetric matrix V K

that satisfies (12) for some symmetric positive definite matrix
W K if and only if the matrix

(
CAK − C

)
is Hurwitz (its

eigenvalues have negative real parts).
To see if the above theorem implies the matrix(

CAK − C
)

to be Hurwitz, we examine Gerŝgorin’s disks
[29] of

(
CAK − C

)
, whose union identifies the region in

the complex plane z that contains all N eigenvalues λi of(
CAK − C

)
. The disk of the i-th eigenvalue λi is given by

∣∣z − (
CAK − C

)
ii

∣∣ �
∑
j �=i

∣∣∣(CAK − C
)
ij

∣∣∣ , (13)

which given that
(
CAK − C

)
ii

= −ci and(
CAK − C

)
ij

= ciAi hij / hii can be rewritten as
|z + ci| � ci |Ai|

∑
j �=i hij/hii. The Hurwitz nature of(

CAK − C
)

is then satisfied if and only if ∀i it holds that
ci − ci |Ai|

∑
j �=i hij/hii > 0, i.e., hii � |Ai|

∑
j �=i hij . But

this requirement is evidently fulfilled by condition (11), so
the existence of Lyapunov functions vK for given fK is
established as required in Theorem 4 and point (iv) proved.

The condition (11) however requires a stricter sharp in-
equality hii > |Ai|

∑
j �=i hij , which means that none of the

disks (13) contains the point z = 0. As it holds that the
determinant of a square matrix is equal to the product of its
eigenvalues, the determinant of matrix

(
CAK − C

)
cannot be

equal to zero. Hence, there can exist only a unique solution
σ̂K to σ = BK + AKσ and the assumption on each JK to
contain a unique Nash equilibrium σ̂K in R

N was therefore
correct, being in fact implied as a consequence of condition
(11). This proves both points (i) and (iii).

Lastly, if W K > 0 is used in (12), then also V K > 0
and the polynomial function vK > 0 is strictly increasing
because all its coefficients are positive. But then condition (9)
from Theorem 4 is true for any σ∗ smaller than σ such that
σi = max [Σi] and σj � max [Σj ] ∀j �= i, which proves point
(v) and allows partial resets of (5) as discussed previously.

B. Physical Interpretation

The theorem states that (i) if condition (11) is fulfilled,
the linear power/rate control game G admits unique Nash
equilibrium σ̂K in R

N for given βK , and (ii) if power ranges
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Σ, that is to say the truncation bounds max |Σ|, are set such
that all σ̂K ∈ Σ, the algorithm (5) converges to σ̂K , that
is to say to σ̂Kmax

. This renders redundant the requirements
of Theorem 1, predicting solely the equilibrium existence,
which were necessary to be assumed in the previous general
Theorem 4. Furthermore, the well-known Foshini-Miljevic al-
gorithm can be incorporated under such circumstances into our
framework and its key, but vague requirement for “algorithmic
feasibility” can be substituted by requiring validity of the
proposed condition (11).

In fact, condition (11) can be regarded as an admission
control scheme on the data link layer, which is cross-layer
optimized with the underlying physical layer in terms of
assuring the convergence of its power and rate control and
moreover supplementing the admission control, implicit to our
system model and based on defining link BR functions so as
to assign zero transmit powers to some chosen interference
values. Note also the cross-layer relation to the network layer
through its parameter Bi, which is adaptively adjusted in
response to routing purposes so that always enough transmit
power is allocated for a given transmission distance of link i.

Using only said condition (11), each link can determine
independently from others, whether its transmission would
affect the stability of the overall network under given channel
gains hii and hij and with a BR function characterized by
Bi and Ai. All of these parameters are locally available
information for link i and, thus, there is no need for some
collective decision-making causing undesirable overhead.

To be more specific, link i with an intention to start
transmitting data can proceed only if hii > |Ai|

∑
j �=i hij .

Following this admission rule by all links assures that the
power/rate control converges globally and asymptotically with
an exponential motion to a unique Nash equilibrium for
any initial condition. Note that the absolute value of local
interference is not important as e.g. in the case of CSMA/CA.
However, transmission by a link violating the admission
control condition (11) results in an undesirable exponential
divergence of all transmit powers in the network towards
minimum or maximum limits of the transmit power profile
Σ (note that small violations may be tolerable due to the
approximate nature of Gerŝgorin’s disks used in proof of
Theorem 5). Instantaneous violations due to randomization of
hij by h̃ij are negligible as their speed is much faster than
the network reaction abilities or more precisely the update
frequency 1/T .

It is apparent from the theorem proof that divergence surely
follows only if at least one eigenvalue λi of the matrix(
CAK − C

)
has a positive real part or if at least one

eigenvalue λi such that
∣∣λi

(
AK

)∣∣ = 1 corresponds to a
Jordan cell with dimension more than 1, because then there
exists no vK to satisfy (12).

As for the interpretation of the admission control condition
(11), it can be understood in the following way. Suppose that
the path loss channel gain hij decreases proportionally to
1/lαij , where lij is the length of the physical distance between
TXi and TXj and α ∈ [2, 5]. Then (11) can be rewritten as

|Ai|
hii

∑
∀j �=i

hij = |Ai| lαii
∑
∀j �=i

1
lαij

< 1. (14)

So the length of link i must be such that

lii <

⎛
⎝|Ai|

∑
∀j �=i

l−α
ij

⎞
⎠

−1/α

. (15)

Supposing for simplicity only one strongly interfering link
j and neglecting the contribution of others, the last inequality
reduces to

lij > lii
α
√
|Ai|. (16)

Then the condition (11) means that in order to assure the
convergence of SA power/rate allocation, the interfering trans-
mitter j must be located outside of a disk area around the
receiver of link i, whose diameter is given by the distance to
its corresponding transmitter i and scaled by factor α

√|Ai|.
Hence, the condition is in fact equivalent to position-based
control for given propagation/channel model.

VII. NUMERICAL RESULTS

Our simulations test whether the proposed approach to
power and rate control has the potential to allocate satisfacto-
rily high CIRs for links in densely populated ad hoc networks.
This kind of evaluation is needed, because the above work
analyzes power/rate control updates based solely on experi-
enced local inband interference, whereas many fundamental
formulae from information theory depend on the relative CIR
[13].7

The results show that given the same amount of total
network power, a representative algorithm from our framework
allocates higher link CIRs than a hereafter introduced com-
parison algorithm under changing network density (Subsection
A) and topological randomness (Subsection B). This is an
expectable result due to the direct connection of such network
parameters to local interference, which is in turn the main
algorithmic input in our framework. However, the proposed
approach to CIR allocation is comparatively also more robust
against malicious attacks (Subsection C) and fairer in its
distribution (Subsection D).

We assume in all our scenarios a square area with 10 km
edge and N = 100 stationary links (or N changing from 1
to 100), whereby their length is set to 100 meters in order to
simplify the interpretation of the following simulation results
(our conclusions can be readily extended to the general case).

The location of individual links depends on the scenario
setup, but in each scenario, all links update their transmit
powers asynchronously and distributively using algorithm (5)
(partially reset from σ∗

i = 0.1 W if needed and using
ak

i = 1/k) and the same linear BR function

βi (σ−i) = hiiσ
max
i − hT

−iσ−i, (17)

whereby the network maximum transmit power σmax
i =

max [Σi] = 1 W. This corresponds to the usage of “bursty”
high-speed high-power transmissions for low interference and
vice versa as discussed in Section VI. Channel gains hij

exhibit a path loss with exponent α = 3.5 and are subject to
Rayleigh fading h̃ij with maximum Doppler frequency shift
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Fig. 1. Histogram of differences ΔCIRi = CIRprop
i −CIRcomp

i between
CIRis allocated by network links i using the proposed algorithm (CIRprop

i )
and the comparison algorithm (CIRcomp

i ). Eight cases of different network
density are shown, each obtained by averaging over 104 topologies with
uniformly randomly distributed links.

250 Hz. Naturally, only stable topologies in terms of condition
(11) are considered.

For a precisely-defined and fair comparison, we compare
equilibrium CIRs allocated based on the usage of BR func-
tions (17) (“proposed algorithm”) with CIRs obtained by a
comparison algorithm, which (i) allocates the transmit power
of every link such that every network RX receives the same
power (recall that all TX−RX pairs are equidistant); whereby
(ii) the level of said received power is such that the total sum
of transmit powers used by such “constant received power”
algorithm is equal to the total of our linear BR algorithm.

A. Scenario with Varying Network Density

In the first scenario, we slowly increase from 1 to 100 the
number of active links, distributed uniformly randomly in the
network, and compare the performance of both algorithms in
terms of allocated equilibrium CIRs.

Fig. 1 depicts a histogram of CIR differences ΔCIRi =
CIRprop

i − CIRcomp
i between CIRis allocated by network

links i using the proposed algorithm (CIRprop
i ) and the

comparison one (CIRcomp
i ), whereby each curve represents

a different total number N of active links. We observe that
growing network link density (and thus worse interference
conditions) implies a shift of the histogram curves in the
direction of positive values, which means a progressive im-
provement of CIRis allocated by the proposed algorithm
with respect to the comparison one under worsening network
density conditions.

Fig. 2 then concerns average network CIRs, denoted
as avgiCIRi =

∑
∀i CIRi/N , allocated by the pro-

posed algorithm (avgiCIRprop
i ) and the comparison algorithm

(avgiCIRcomp
i ). For comparison purposes, it depicts the ratio

avgiCIRprop
i /avgiCIRcomp

i as a function of increasing den-
sity, whereby it plots maximum values of this ratio achieved
in 104 different topologies, i.e., a numerical upperbound
max104topologies [avgiCIRprop

i /avgiCIRcomp
i ]. We can see

7As the performance improvement of power/rate-controlled systems has
been already demonstrated, e.g., in [30] or [31], it is not being repeated here.

0 10 20 30 40 50 60 70 80 90 100

110

100

120

130

140

150

160

Number of active links [-]

a
v
g

iC
IR

p
ro

p
 /

 a
v
g

iC
IR

c
o
m

p
  
 [

%
]

i
i

Fig. 2. Maximum value of the ratio of average network CIRs (avgiCIRi =∑
∀i CIRi/N ), allocated by network links i in 104 different topologies

using the proposed algorithm (avgiCIRprop
i ) and the comparison algorithm

(avgiCIRcomp
i ), shown as a function of increasing number of active links,

distributed uniformly randomly in the network.

that our proposed algorithm outperforms the constant received
power one by allocating up to 60 % higher average CIRs in
sparse networks and is more efficient by about 10 % even in
dense networks.

The large improvement difference between sparse and dense
networks lies in the fact that the distribution of local interfer-
ence is less homogenous in rather sparse networks, and power
allocation with the same BR functions thus results in mutually
more different powers and consequently CIRs throughout the
network. This enables significant local CIR improvements by
the proposed algorithm in sparser networks, whereas in denser
networks, the interference is more homogenous yielding an
allocation of comparable powers and hence only lower and
more balanced CIR improvement possibilities.

B. Scenario with Varying Topological Randomness

The second scenario evaluates, how the proposed algorithm
can improve link CIRs if the randomness of simulated
network topologies varies having a constant number of links.
We simulate the network randomness variation as a continuous
transition from regular lattice topologies (0 % randomness)
to uniformly randomly distributed topologies (100 % ran-
domness). Specifically, we superpose a regular lattice with
10 rows and 10 columns over the network and define a
virtual square area around each of the 100 intersections of
the lattice. The geometrical centers of 100 network links are
then placed uniformly randomly anywhere into these deviation
areas, whereby their size is initially set to zero (i.e., only the
intersection point itself is contained) and then progressively
increased such that finally links can be placed anywhere in
the network. The value of the network randomness can be
then calculated basically as the ratio of the virtual deviation
area edge size and network area edge size.

Fig. 3 shows analogically to Fig. 1 four histograms of CIR
differences ΔCIRi between CIRis allocated by network
links i using the proposed algorithm and the comparison one
for four representative levels of topological randomness - 0%,
70%, 80% and 100%. We can again observe a progressive
shift of CIR differences to positive values in response
to increasing topological randomness, which proves better
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Fig. 3. Histogram of differences ΔCIRi = CIRprop
i −CIRcomp

i between
CIRis allocated by network links i using the proposed algorithm (CIRprop

i )
and the comparison algorithm (CIRcomp

i ). Four cases of increasing topo-
logical randomness in a network with 100 active links are illustrated, each
obtained by averaging over 104 topologies.

comparative CIR allocation performance of the proposed
algorithm in random networks. As observed, both algorithms
allocate practically the same CIRs in regular topologies with
grid-like layout (see the zero centered CIR differences for 0
% randomness), since the interference among equidistant links
using moreover the same BR functions is rather homogenous
(the influence of link angular orientations averages out).
Improvement by the proposed algorithm comes analogically
to our previous result with interference conditions being more
heterogeneous, i.e., in more random network topologies.

In order to highlight the performance improvement trend of
the proposed algorithm in progressively randomized topolo-
gies, Fig. 4 plots similarly to Fig. 2 the maximum value
of the ratio avgiCIRprop

i /avgiCIRcomp
i of average network

CIRs (avgiCIRi), allocated by network links in 104 different
topologies using the proposed algorithm (avgiCIRprop

i ) and
the comparison algorithm (avgiCIRcomp

i ) and shows it as a
function of increasing topological randomness in a network
with 100 links. Note as a validity cross-check the correspon-
dence of the herein shown approximately 10% improvement,
achieved in full random networks, with the corresponding
result of the same 10 % improvement shown in Fig. 2 for
a network with 100 uniformly randomly distributed links.

C. Scenario with Malicious Links

Assume now a network with 100 uniformly randomly
distributed links as in the first scenario and suppose that
some portion of the network transmitters does not use its
available energy for communication purposes, but in contrary
only maliciously attacks the surrounding links by causing
unnecessary interference. Setting the output level of attacking
transmitters to the network maximum transmit power limit
σmax

i = 1 W, we investigate the immunity of our two
algorithms to such attacks in terms of CIR allocation.

The malicious interference attack is simulated to occur from
time 200 to 300 iterations and to be carried out by randomly
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Fig. 4. Maximum value of the ratio of average network CIRs (avgiCIRi =∑
∀i CIRi/N ), allocated by network links i in 104 different topologies

using the proposed algorithm (avgiCIRprop
i ) and the comparison one

(avgiCIRcomp
i ), shown as a function of increasing topological randomness

in a network with 100 active links.
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Fig. 5. Two evolution examples of the difference between the average
network CIRs (avgiCIRi) allocated by network links i using the proposed
algorithm (avgiCIRprop

i ) and the comparison algorithm (avgiCIRcomp
i ),

showing the effects of a malicious interference attack between time 200 and
300 iterations by randomly chosen 30 % or 60 % of the network transmitters.

chosen 30 % or 60 %, of the network transmitters. Fig. 5
then shows for both cases the evolution of the difference
avgiCIRprop

i − avgiCIRcomp
i between the average network

CIRs (avgiCIRi) allocated by network links using the pro-
posed algorithm (avgiCIRprop

i ) and the comparison algorithm
(avgiCIRcomp

i ). Note that avgiCIRprop
i − avgiCIRcomp

i =
avgi [CIRprop

i − CIRcomp
i ] = avgiΔCIRi.

Both curves represent in the first 200 iterations the process
of convergence to Nash equilibrium, whose reaching corre-
sponds to the flat parts of the plots. At time 200 iterations,
when the malicious links suddenly start to disturb others, we
observe in both cases that the proposed algorithm quickly
allocates a new Nash equilibrium with transmit powers better
adapted to the new interference conditions, thus yielding
higher CIRs compared to the constant received power one.
Consequently, we observe in Fig. 5 sudden improvements
of the average network CIR (curves’ step-ups), coinciding
with the attack time frame. Such a response to increased
interference proves a comparatively better robustness against
interference attacks. After the attack finishes at time 300, the
network returns to its original condition.

This conclusion is further supported by the evidence
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Fig. 6. Distribution of CIR differences ΔCIRi = CIRprop
i − CIRcomp

i
between CIRs allocated by two randomly chosen network links (labeled
as link “1” and “2”) using the proposed algorithm (CIRprop

i ) and the
comparison algorithm (CIRcomp

i ) in 104 network topologies with 100
uniformly randomly distributed active links. The coordinates of a white cross
indicates the overall average values of ΔCIRlink 1 and ΔCIRlink 2.

of Fig. 7, plotting the maximum value of the difference
avgiCIRprop

i − avgiCIRcomp
i between the average network

CIRs (avgiCIRi), allocated by network links in 104 different
topologies using the proposed algorithm and the comparison
one as a function of increasing ratio of malicious transmitters
in the network. Note also from the figure that the shown
average network CIR difference decreases with increasing
number of malicious links, and follows hereby the clearly
understandable trend of decreasing values of avgiCIRprop

i

and avgiCIRcomp
i due to the decreasing number of usefully

communicating links and worsening interference conditions.

D. Scenario for Evaluating Fairness

In the last scenario, we measure CIR differences between
the proposed and comparison algorithms for two arbitrarily
chosen links (labeled as links “1” and “2”) in 104 net-
work topologies with 100 uniformly randomly distributed
links. Fig. 6 represents both CIR differences ΔCIRlink1

and ΔCIRlink2 measured in each topology by a point with
coordinates [ΔCIRlink1; ΔCIRlink2]. The coordinates of a
white cross in Fig. 6 are given by the overall average values
of ΔCIRlink1 and ΔCIRlink2 for all 104 topologies.

We can see from the distribution of measured differences
ΔCIRlink1 and ΔCIRlink2 that the proposed algorithm
achieves more overall CIR improvements (black points) than
impairments (gray points). This argument is supported by
positive coordinates of the white cross, i.e., the average values
of CIR differences. The results of the last simulation can
be thus understood as a demonstration of the fact that the
proposed algorithm improves CIR in a generally fair way.

Observe also that in some topologies the proposed algorithm
significantly improves the CIR of one of the two surveyed
links by up to ΔCIR = 10. We consider this as a substantial
achievement, because all our simulation scenarios consider
(at least at some stage) very dense topologies at the stability
limit (i.e., hii ≈ |Ai|

∑
j �=i hij in (11)), which consequently
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Fig. 7. Maximum value of the difference between the average network
CIRs (avgiCIRi), allocated by network links in 104 different topologies
using the proposed algorithm (avgiCIRprop

i ) and the comparison one
(avgiCIRcomp

i ), shown as a function of increasing ratio of malicious
transmitters in a network with 100 uniformly randomly distributed active
links.

results in relatively high interference with absolute CIR
values hardly exceeding 3 dB in the case of both simulated
algorithms.

VIII. CONCLUSION

We studied distributed asynchronous power and rate control
for ad hoc networks using general best-response and rate
assignment functions from a game-theoretical point of view.
Restricting our model by only minimal necessary mathemati-
cal assumptions, we showed conditions for global convergence
of the power/rate dynamics to Nash equilibria, whereby our
analysis is entirely general and application independent. As
we assumed network links to have the freedom to choose their
own power and rate control rules, the knowledge of the herein
derived results can be used for a practical choice of these
rules by individual links to guarantee network-wide existence
of and convergence to optimally allocated powers and rates.
The potential of our approach to provide for satisfactory
CIR allocation was also shown, together with a discussion
of convergence issues in stochastic channels.
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