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Abstract

This paper focuses on the formal assessment of the properties of cooperation enforcement mechanisms used to detect
and prevent selfish behavior of nodes forming a mobile ad hoc network. In the first part, we demonstrate the requirement
for a cooperation enforcement mechanism using cooperative game theory that allows us to determine a lower bound on
the size of coalitions of cooperating nodes. In the second part, using non-cooperative game theory, we compare our coop-
eration enforcement mechanism CORE to other popular mechanisms. Under the hypothesis of perfect monitoring of
node behavior, CORE appears to be equivalent to a wide range of history-based strategies like tit-for-tat. Further, adopt-
ing a more realistic assumption taking into account imperfect monitoring due to probable communication errors, the
non-cooperative model puts in evidence the superiority of CORE over other history-based schemes.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Cooperation enforcement mechanisms have
been developed recently in the attempt to cope
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with the selfish behavior of nodes in mobile ad
hoc networks (MANET). As defined in [5,6], a
node is considered selfish when it does not partic-
ipate in the basic network operation in order to
save energy. As opposed to maliciousness, selfish-
ness is a passive threat that does not involve any
intention to damage the operation of networking
functions by active attacks like route subversion,
tampering with data, etc.

In this paper we present two different ap-
proaches to assess the features of our cooperation
enforcement mechanism CORE [6,7]. Using
ed.
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CORE, every node locally rates its neighbors
through a monitoring mechanism. The observa-
tions collected by the monitoring mechanism are
processed to evaluate a reputation value associated
to each neighbor. The reputation value is used by
CORE in a step-like cooperation policy: only
nodes with a reputation that satisfy the require-
ment of being greater than a defined threshold
are served (i.e. data and routing packets are for-
warded), while nodes with low reputation values
are gradually isolated from the network.

Since a large fraction of existing cooperation
enforcement schemes are based on principles akin
to decision making and economic modeling, a nat-
ural tool that emerged to be suitable for the valida-
tion of such mechanisms is game theory.

In the first part of this paper we present a model
that takes into account both a node-centric and a
network-centric perception of the interactions be-
tween nodes that participate in a MANET by
using cooperative game theory. We first demon-
strate the requirement for a cooperation enforce-
ment mechanism in order to promote
cooperation between self-interested nodes by
showing that in the absence of such a mechanism
the best strategy for a node would be to free ride.
Moreover, we analyze which would be the size of a
coalition of cooperating nodes based on the
importance given by a node to the node-centric
and network-centric perspective of the game. We
finally suggest how the CORE mechanism could
be used to stimulate a node to join the coalition
of cooperators. The benefit from using cooperative
GT derives from the ability of this method to seize
the dynamics of large group of players: the strat-
egy chosen by a player does not only depend on
a self-interested perception of the game but also
takes into account a group-wide policy of the coa-
lition the player belongs to.

Although the ‘‘cooperative games’’ approach
appears to be appropriate to model the dynamics
of large coalitions of nodes forming a MANET,
the main limitation of this method is that it is
based on a high-level representation of the reputa-
tion mechanism that does not take into account
the features of CORE. To overcome this weakness,
we present in the second part of this paper an
alternative approach based on non-cooperative
game theory [8,9]. In this second method we use
a model that describes the strategy of a self-inter-
ested node that has to take the decision whether
to cooperate or not with a randomly chosen neigh-
bor. Under this model, the CORE mechanism can
be translated into a strategy profile that can be
compared to other popular strategies. Under the
commonly used hypothesis of perfect monitoring,
we demonstrate the equivalence between CORE
and a wide range of history-based strategies like
tit-for-tat. Further, by adopting a more realistic
assumption that takes into account unreliable
observations of nodes� behavior due to communi-
cation errors, the non-cooperative model puts in
evidence the superiority (in terms of stability and
robustness) of CORE over other history-based
schemes.

Although the two methods described in this
paper focus on CORE as a specific mechanism,
some general conclusions can be drawn from this
analysis towards the design of cooperation en-
forcement mechanisms in general.
2. Related work

Recently, much attention has been dedicated to
game theoretical models for MANET in general
and for cooperation enforcement mechanisms in
particular and an increasing number of models
have been presented to the community. It is how-
ever out of the scope of this paper to propose an
extensive state of the art of game theoretical mod-
els of cooperation in MANET, thus we will focus
on some approaches that we deem related to our
setting.

In an interesting approach presented in [2] the
authors propose a game theoretical model in
which energetic information is taken into account
to describe the conflicting interaction between het-
erogeneous nodes involved in a forwarding game,
i.e. a game in which nodes that belong to a path
from a source to a destination have to collabora-
tively relay data packets. The authors study the
properties of a well known strategy (generous-tit-
for-tat, G-TFT) and demonstrate that under the
energy constraints imposed to the nodes, G-TFT
promotes cooperation if every node of the network



1 The definition of stability also implies that no agent wants
to join the coalition.
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conforms to it. The model in [2] provides an accu-
rate description of the energetic constraint of a
node, which is the main reason for a selfish behav-
ior, but provides only high-level guidelines to-
wards the design of a cooperation enforcement
mechanism based on the G-TFT strategy. The
main difference between the work presented in this
paper and the research conducted in [2] is that in
our model we take into account a more realistic
scenario where the observations made by a node
on her neighbors can be affected by errors. The
monitoring mechanism is indeed the key feature
of a cooperation strategy based on the observation
of the opponent�s move (such as G-TFT) and we
believe that a more accurate description of how
these observations are made is fundamental.

Another interesting work towards the definition
of a generic game theoretical framework to study
cooperation in MANET has been presented in
[3]. The authors propose a model that takes into
account both the available energy to a node and
the traffic generated and/or directed to that node
and helps derive some interesting guidelines to-
wards the definition of a cooperation mechanism.
The authors not only analyze some existing coop-
eration mechanisms including CORE but also pro-
pose to use the tit-for-tat (TFT) as a cooperation
strategy. Similarly to the work presented in [3],
in our paper we are able to accurately describe
not only our cooperation strategy CORE but also
a wide-range of history-based cooperation strate-
gies (such as TFT). The performance analysis of
the TFT strategy presented in [3] is extended in
our work and we prove that CORE outperforms
all other strategies when the imperfect monitoring
assumption is made.

In [4] the authors propose an alternative model
for the forwarding behavior of a node that is part
of a specific network topology. By using their
model, the authors are able to express the equilib-
rium forwarding strategy of a selfish node as a
function of topology and routing (path length)
information. They also propose a punishment
mechanism that enforces a cooperative behavior
among selfish nodes. Although the results ob-
tained in [4] provide a very useful description of
the relation between routing, network topology
and the cooperative behavior of a node, the pro-
posed punishment mechanism is limited to a spe-
cific instance of the considered network topology
and does not take into account the imperfect mon-
itoring of the node behavior.

The research presented in [2–4] and in the sec-
ond part of this paper, is based on non-cooperative
game theory: even when multiple players are con-
sidered, the strategy selection phase is always dri-
ven by a node-centric perception of the game. As
a result, the cooperation strategies obtained
through the proposed models take into account
only the payoffs obtained by a single player.
Hence, in the first part of this paper we propose
an alternative approach based on a general model
using cooperative game theory as a framework to
study cooperation as a group initiative rather than
a strategy adopted by single players. We believe
that the ‘‘cooperative games’’ approach provides
an appropriate way of describing the dynamics
of group formation in MANET but needs further
research in order to introduce in the model a more
formal description of cooperation enforcement
mechanism.
3. Cooperative games approach

In an attempt to explain cooperation and coali-
tion formation, most theoretical models use a two-
period structure as introduced in [12,13]. Players
must first decide whether or not to join a coalition.
In a second step, both the coalition and the
remaining agents choose their behavior non-coop-
eratively. A coalition is stable if no agent has an
incentive to leave. 1 Simulations presented in [16–
18] have shown that, although there is coopera-
tion, the coalition size is rather small.

In this paper we suggest an approach based on
a preference structure as defined by the ERC-the-
ory [11]. This theory explains most of the behavior
of agents observed in diverse experiments but
deviates little from the traditional utility concept.
The utility of an agent is not solely based on the
absolute payoff but also on the relative payoff
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compared to the overall payoff to all agents. Given
a certain relative payoff share, the utility is strictly
increasing in the own absolute payoff of the agent.
Given a fixed absolute payoff, the agent is best off
when receiving just the equal (fair) share. To both
sides of this equal share, i.e. when receiving less or
more than the fair amount, utility is lower, even if
the absolute payoff does not change. 2

In Section 3.2, we first study a symmetric N-
node prisoner�s dilemma (PD) game in a non-
cooperative setting, in which the agents have only
two options available––cooperate or defect. We
analyze Nash-equilibrium of the non-cooperative
game when agents� preferences can be described
by ERC, i.e. players value both their absolute
and their relative payoff. In particular, we look
at the number of agents who play cooperatively.
We show that non-cooperation is always an equi-
librium, since––if no other node cooperates––a
node would maximize its absolute payoff and re-
ceive the equal share by choosing to defect. Addi-
tionally, however, there may be Nash-equilibrium
in which nodes cooperate: if, for example, the rest
of the agents play cooperatively, a player can get
the equal share by choosing to cooperate as well.
Hence, if it values its relative payoff being close
to the equal share more than its absolute payoff,
it will choose to complete the grand coalition.
Clearly, partial cooperation can also occur, where-
by some nodes cooperate while others defect. For
such equilibrium, we show that the number of
cooperating nodes is rather large: since coopera-
tion leads to a lower absolute payoff, for a node
to choose to cooperate, playing cooperatively must
move it closer to the equal share than defecting
would. As we show, this can only be the case if
at least half of the nodes cooperate. This result
contrasts with the standard result presented in
[16] which states that the coalition size is rather
small.

Note, however, that in the prisoner�s dilemma,
the nodes have only the discrete choice of cooper-
ating or defecting, but with respect to the cooper-
ation enforcement problem, the nodes of an ad hoc
2 Note that such a preference for equity is self-centered only
and is distinct from altruism.
network might choose their cooperation level 3

continuously. We therefore introduce in Section
3.3 a symmetric continuous PD-game based on
the ERC preference structure. An interesting find-
ing of this analysis is that ERC alone cannot im-
prove upon the non-cooperative Nash-
equilibrium with standard preferences in which
only the absolute payoff matters to a node.

As a further refinement, we propose the cooper-
ative-games approach consisting in a combination
between the ERC preference structure and the
two-stage coalition formation method [12]. In con-
trast to the traditional models from the game the-
ory literature, the ERC preference structure allows
coalitions to involve a rather large fraction of play-
ers. Furthermore, this model allows for a precise
characterization of conditions under which even
a grand coalition can be obtained.

Finally, in Section 3.5 we propose a discussion
on the relation between a coalition formation
process and our cooperation enforcement mecha-
nism CORE, used as an effective complementary
tool to impose a specific ERC-type for every node
participating in a cooperative setting as an ad hoc
network.

3.1. The preference structure

Our analysis relies on a preference structure in
which players, along with their own absolute pay-
off, are motivated (non-monotonously) by the rel-
ative payoff share they receive, i.e. how their
standing compares to that of others. We use the
ERC model presented in [4] and enhance it with
a complete information framework. Let the (non-
negative) payoff to node i be denoted by yi, i, . . . ,N,
and the relative share by ri ¼ yi=

P
jyj.

The ERC-utility function is defined as follows:
aiu(yi) + bir(ri) where ai,bi P 0 and u( ) is differen-
tiable, strictly increasing and concave, and r( ) is
differentiable, concave and has its maximum in
ri ¼ 1=N . Throughout this paper we assume that
nodes� disutility from disadvantageous inequality
3 The definition of cooperation level will be given in Section
3.5: here it is sufficient to know that cooperation level stands for
the fraction of packets (data or routing) that are forwarded by a
node of the network playing the cooperation game.



Table 1
Summarizing table defining the game based on ERC theory

Number of players N

ERC global utility function for player i aiu(yi) + bir(ri)
ERC-types for player i ai, bi P 0
Absolute payoff for player i yi
Absolute utility function for player i u(yi), differentiable, strictly increasing, concave
Relative payoff for player i ri

Relative utility function for player i r(ri), differentiable, concave, maximum in ri = 1/N

P. Michiardi, R. Molva / Ad Hoc Networks 3 (2005) 193–219 197
is larger if the node is better off than average, i.e.
rð1=N � xÞ 6 rð1=N þ xÞ, 8x 2 ½0; 1=N 	. The types
of nodes are characterized by the relative weights
ai,bi (Table 1).

3.2. The prisoner�s dilemma with a discrete

strategy space

In this section we study a simple symmetric
N-node prisoner�s dilemma where each mobile
node can cooperate, �c�, or defect, �d�: this implies
that the strategy set available to each player is dis-
crete and only two actions are allowed. In terms of
the node misbehavior problem, this means that the
node either correctly executes the network func-
tions or it does not.

Let the total number of cooperating nodes be
denoted by k. For any given k, the payoff to a node
is given by B(k) if the node defects (tries to free-
ride). If a node plays cooperatively, it must bear
some additional costs C(k). Its payoff is therefore
given by B(k) � C(k). We assume decreasing mar-
ginal benefits for a node if the number of mobile
nodes rises, i.e. B(k) is increasing and concave.
Furthermore, the total cost of cooperation,
kC(k), increases in k.

In order to generate the standard incentive
structure of a PD game, we make the following
assumption.

Assumption 1. PD structure: B(k + 1) � B(k) <
C(k + 1).

Assumption 1 implies that playing coopera-
tively reduces the absolute payoff, given an arbi-
trary number of �c�-nodes. To make cooperation
more attractive from both the social and the
individual point of view, we make the following
assumptions:
Assumption 2. (Socially desirable)

N 
 Bðk þ 1Þ � ðk þ 1ÞCðk þ 1Þ P N 
 BðkÞ � kCðkÞ:
ð1Þ

Assumption 3. (Individually desirable)

Bðk þ 1Þ � Cðk þ 1Þ P BðkÞ � CðkÞ: ð2Þ
Furthermore, we assume that payoffs for both

cooperating and defecting nodes are non-negative
for all k.
3.2.1. The Nash-equilibrium
In the following section we analyze the Nash-

equilibrium in the one shot PD game under the
assumption that all the nodes joining an existing
network choose simultaneously.

Assume that k nodes, aside from node i, play
cooperatively. We want to study the condition
under which node i, which is not part of the set
of k cooperating nodes, chooses to cooperate;
player i chooses to play �c� if and only if her utility
is higher than when playing �d�, i.e.:

aiu½Bðk þ 1Þ � Cðk þ 1Þ	

þ bir
Bðk þ 1Þ � Cðk þ 1Þ

N 
 Bðk þ 1Þ � ðk þ 1ÞCðk þ 1Þ

� �
P aiu½BðkÞ	 þ bir

BðkÞ
N 
 BðkÞ � kCðkÞ

� �
: ð3Þ

This is equivalent to node i playing �c� if and only if

ai

bi
6 dðkÞ ð4Þ

where

dðkÞ ¼
r Bðkþ1Þ�Cðkþ1Þ

N 
Bðkþ1Þ�ðkþ1ÞCðkþ1Þ

h i
� r BðkÞ

N 
BðkÞ�kCðkÞ

h i
u½BðkÞ	 � u½Bðk þ 1Þ � Cðk þ 1Þ	 :



4 The proof of this affirmation is given in Appendix A.
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In order to choose �c� the node must be overcom-
pensated for the loss in absolute gain by moving
closer to the average gain.

The general conditions for a Nash-equilibrium of

a ERC-PD game [11] of N nodes whereby the num-
ber of cooperating nodes is k* can be used to study
expression (4):

ai

bi
6 dðk� � 1Þ for k� nodes ðplaying ‘c’Þ; ð5Þ

ai

bi
P dðk�Þ for the remaining N � k� nodes

ðplaying ‘d’Þ: ð6Þ

Conditions (5) and (6) can be used to evaluate the
number of nodes k* that may possibly cooperate
in a Nash-equilibrium. On one hand, as long as
d(k* � 1) < 0, there is no chance of having a coali-
tion of size k* because ai=bi > dðk� � 1Þ for all
types and condition (5) cannot hold for any node.
On the other hand, the conditions for a Nash-equi-
librium given by (5) and (6) imply that if
d(k* � 1) > 0 then there are types ½ðai=biÞi¼1;...;N 	
of nodes such that k* nodes cooperate and
N � k* nodes free-ride. Note that for a given dis-
tribution of ERC-types, d(k* � 1) > 0 is a neces-

sary but not sufficient condition to get a coalition
size of k*. For a given payoff structure with
d(k* � 1) > 0, however, there exist ERC-types
such that k* is the equilibrium for any coalition
size.

In order to find feasible coalition sizes, we must
therefore study conditions under which d(k) is
positive.

Note that in (4) the denominator of d(k) is pos-
itive due to Assumption 1. The sign of the numer-
ator, however, depends on the number k of
cooperating nodes.

For k = 0 the sign of the numerator is negative,
since

r
Bð1Þ � Cð1Þ
NBð1Þ � Cð1Þ

� �
¼ r 1 � ðN � 1ÞBð1Þ

NBð1Þ � Cð1Þ

� �
< r

Bð0Þ
NBð0Þ

� �
¼ r

1

N

� �
:

For k = N � 1 the sign of the numerator is pos-
itive, since
r
BðNÞ � CðNÞ

NBðNÞ � NCðNÞ

� �
¼ r

1

N

� �
> r

BðN � 1Þ
NBðN � 1Þ � ðN � 1ÞCðN � 1Þ

� �
¼ r 1 � ðN � 1ÞBðN � 1Þ þ ðN � 1ÞCðN � 1Þ

NBðN � 1Þ � ðN � 1ÞCðN � 1Þ

� �
:

Therefore, d(0) < 0 < d(N � 1) and no nodes uni-
laterally cooperate whereas all nodes playing �c�
can establish an equilibrium, provided that all
nodes� types ðai=biÞ are smaller than d(N � 1).

In general, there are equilibria where only a cer-
tain number k* of nodes cooperate. The crucial
point is to find whether or not the numerator is
positive. Remember that we previously assumed
that

r
1

N
� x

� �
6 r

1

N
þ x

� �
; 8x 2 0;

1

N

� �
:

It is necessary, in order to obtain d(k) > 0, that
a node choosing �d� further deviates from the equal
share (1/N) than by playing �c�, i.e.

1

N
� Bðk þ 1Þ � Cðk þ 1Þ
NBðk þ 1Þ � ðk þ 1ÞCðk þ 1Þ

>
1

N
� BðkÞ
NBðkÞ � kCðkÞ : ð7Þ

It is possible to show that inequality (7) is satis-
fied for k > N/2. 4

Assumptions 1 and 2 imply that the condition
d(k) > 0 is necessary (but not sufficient) to state
that, for any given vector of types, if a node plays
�c� at the equilibrium, then at least half of the nodes
cooperate.

Proposition 1. For any given payoff structure of

the PD game with ERC preferences, there is always

an equilibrium in which all nodes defect.

Proposition 2. Given Assumption 1 and Assumption

2, there is a Nash-equilibrium where at least N/2

nodes cooperate.

Based on Proposition 2, if there is a coalition of
cooperating nodes then it is rather large.



3.3. The prisoner’s dilemma with a continuous

strategy space

In Section 3.2.1, we assumed that nodes only
have a discrete option as to whether to cooperate
or not. Now, we turn to a prisoner�s dilemma
game where nodes can continuously choose their
cooperation levels. As we will see, ERC alone
cannot improve upon the non-cooperative Nash-
equilibrium with standard preferences whereby
only the absolute payoff matters. However, intro-
ducing more structure to the game, i.e. if nodes
play a coalition game (Section 3.4), ERC may
yield a rather large coalition size or even support
the grand coalition.

Let the number of nodes again be denoted by
N. We define the cooperation level qi (2 [0,1]) as
the fraction of packets (both data and routing
packets) that node i
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as long as at least one node draws utility from its

absolute payoff (ai > 0). 5

Introducing ERC preferences, therefore, does
not increase the cooperation effort chosen by the
nodes when playing the PD-game with a continuous

action set. It does not even change the equilibrium
cooperation levels. In contrast to the (discrete)
prisoner�s dilemma, ERC does not add any equi-
librium in which there is more cooperation effort.
The existence of equilibrium in the PD game that
mimics cooperative behavior, therefore, only arises
in the presence of discrete action sets. Having a
continuous decision variable, ERC does not
change the set of equilibrium. The reason is that
ERC does not establish a preference for being
cooperative, but for being similar to other nodes
with respect to the payoff.

In this section, however, we used the ERC the-
ory in a classical non-cooperative setting: let us see
how the strategy selection of a selfish node change
when introducing more structure to the game, i.e.
when considering a cooperative-game setting.

3.4. Coalition formation: the cooperative-game

approach

As a further refinement, we now propose a
cooperative-games approach consisting in a com-
bination of the ERC preference structure and the
two-stage coalition formation method as intro-
duced in [13].

Let us assume that all nodes are identical with
respect to their payoff function (i.e. they use the
same definition of utility function). In a first stage,
nodes decide whether or not to join the coalition.
By the principle of ‘‘rationality’’, each node is as-
sumed to know the decisions of the other nodes.
The cooperation levels (i.e. the strategy) that will
be chosen in the second stage depend on whether
the nodes take part in the coalition or not. The
coalition thereby maximizes its collective benefits
and plays against the nodes that don�t take part
in the coalition, which simultaneously maximize
their individual utility.
5 The proof of Proposition 3 is given in Appendix B.
We first study the case of nodes that have iden-
tical ERC-types. We demonstrate that within the
coalition formation game, ERC-preferences can
enforce cooperation and even result in the grand
coalition. We then look at the case of heterogene-
ous ERC-types. By studying the extreme scenario
of nodes that are solely interested either in their
absolute payoff or in equity, we will explore the
effects of the existence of some equity-oriented
nodes in the network.

3.4.1. Coalition of identical ERC-types

We will now solve the coalition formation game
backwards, that is, for any coalition size k, we first
study the first order conditions for the choice of
the cooperation level inside and outside the coali-
tion. Then, in the second step, the equilibrium coa-
lition size is determined by a stability condition.
This means that in the equilibrium, k must satisfy
the condition that there is no incentive to leave the
coalition. 6

For standard preferences (using ERC-prefer-
ences this results in the special case b = 0), the
game theory literature shows that the coalition size
is rather small. Using ERC preferences, however,
the number of nodes within a coalition can be
much higher in equilibrium.

Instead of solving the game in general, we
will show that if nodes only value the relative
payoff high enough, i.e. a/b is below a certain
bound then even the grand coalition can be
stable.

The first order condition for nodes outside the
coalition (S) is given by (10), whereas the cooper-
ation strategy of nodes that take part in the coali-
tion is chosen by maximizing the utility function of
a representative member: indeed all nodes within
the coalition S select the same strategy qs since
they are assumed to be of the same type. This im-
plies that all members of the coalition have identi-
cal absolute payoff (yS = B(Q) � C(qS)) and
relative payoff (rS ¼ yS=ðkyS þ

P
j 62SyjÞ).
6 The original work introduced in [23] states that the
stability condition is such that there is an incentive to neither
leave nor join the coalition.
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The first order condition is given by

au0ð Þ þ br0ð Þ½ 	
P

j 62SrjP
jyj

½kB0ðQÞ � C0ðqSÞ	

� br0ð Þ rSP
jyj

ðN � kÞkB0ðQÞ ¼ 0; ð10Þ

au0ð Þ½kB0ðQÞ �C0ðqSÞ	

þ br0ð Þ �
P

j 62SrjP
jyj

C0ðqSÞ þ kB0ðQÞ1�NrSP
jyj

" #
¼ 0:

ð11Þ

• For nodes that do not belong to the coalition S

we know from Section 3.4 that if rj < (>)1/N for
j 62 S then B 0(Q) > (<)C 0(qj).

• For the coalition, we obtain from (10) and (11)
that if rS < (>)1/N then kB 0(Q) > (<)C 0(qS).

7

Since B 0(Q) > kB 0(Q), 8 the first order condi-
tions imply that for nodes within the coalition
rS 6 1/N and thus: kB 0(Q) P C 0(qS). To prove
that inside the coalition rS 6 1/N, assume to
the contrary that rS > 1/N and that rj < 1/N
for some nodes j outside the coalition. Inequal-
ities (10) and (11) imply that C 0(qj) < B 0(Q) <
kB 0(Q) < C 0(qS) which contradicts the assump-
tion of increasing and convex cooperation
costs.

Inequalities (10) and (11) can be used to show
the following proposition:

Proposition 4. (Coalition game) In the symmetric

coalition game for identical ERC preferences (type

a/b), the grand coalition is stable if a/b is sufficiently

small, i.e. nodes are interested enough in being close

to the equal share.

Note first, that within the grand coalition, the
cooperation level satisfies the condition
NB 0(Nq*) = C 0(q*), independently of the ERC-
types and nodes that receive the equal share.

If node i leaves the coalition (k = N � 1), then
from the first order conditions we obtain
7 Assuming that rS > 1/N then r0ð Þ < 0 and (11) implies
kB0(Q) < C 0(qS).

8 For k P 2.
ðN � 1ÞB0½ðN � 1ÞqS þ qi	 P C0ðqSÞ P C0ðqiÞ
> B0½ðN � 1ÞqS þ qi	:

ð12Þ

Let us now look at the cooperation levels that
would result if the ERC-type a/b goes to zero. In
this case, nodes get more and more interested in
getting their equal share, and their cooperation
levels will converge: in the limit ~q ¼ qS ¼ qi. How-
ever, in the limit, inequality (12) still must hold, i.e.
(N � 1)B 0(Nq) P C 0(q).

In the limit the absolute payoff of a node leav-
ing the coalition is smaller than within the grand
coalition, whereas the relative payoff is the same,
i.e. NB0ðeQÞ P C0ð~qÞ.

Therefore, as long as a/b is small enough, the
absolute payoff remains lower and the utility de-
rived from the relative payoff is also smaller than
in the grand coalition. Thus, no node has an incen-
tive to leave the grand coalition if a/b is small
enough.

3.4.2. Coalition of heterogeneous ERC-types

When nodes with heterogeneous ERC-types are
allowed to take part in the coalition (S), those
nodes that have the largest ai/bi will have the
greatest interest to leave the coalition in order to
obtain a larger absolute payoff.

We will now concentrate on the extreme case in
which nodes are either interested in their absolute
payoff (bi = 0) or in equity (ai = 0). The former are
referred to as A-nodes, the latter as B-nodes. In to-
tal, there are Na A-nodes and Nb B-nodes; ka of
these A-nodes and kb B-nodes form the coalition.
The cooperation levels are denoted by qas, qbs for
nodes inside S, qan and qbn for nodes outside the
coalition.

Let us first look at the behavior of B-nodes.
Outside the coalition, any B-nodes can arrive at

the equal share by choosing the average coopera-
tion cost level. Thus,

CðqbnÞ ¼ 1

Na þ kb
½kaCðqasÞ þ kbCðqbsÞ

þ ðNa � kaÞCðqanÞ	: ð13Þ

A B-node inside the coalition has no incentive to
leave if it also receives the equal share:
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CðqbsÞ ¼ 1

Na � kb
½kaCðqasÞ þ ðNb � kbÞCðqbnÞ

þ ðNa � kaÞCðqanÞ	: ð14Þ

In equilibrium, all B-nodes choose the same coop-
eration level, qbeq̂bn ¼ qbs and receive the equal
share:

CðqbÞ ¼ 1

Na
½kaCðqasÞ þ ðNa � kaÞCðqanÞ	: ð15Þ

A-nodes outside the coalition maximize their
absolute payoff, B(Q) � C(qan). The first order
condition is given by

B0ðQÞ ¼ C0ðqanÞ: ð16Þ

Within the coalition, the utility of a representa-
tive A-type-member is maximized by guaranteeing
that the B-members get the equal share, i.e. C(qbs).
The first order condition for choosing qas is given
by

B0ðQÞ ka þ kb
oqbs
oqas

� �
� C0ðqasÞ

¼ B0ðQÞka 1 þ kb
N � kb

C0ðqasÞ
C0ðqbsÞ

� �
� C0ðqasÞ ¼ 0:

ð17Þ

By construction, for any given ka and kb, every
B-node is indifferent to being either inside or out-
side the coalition. For a coalition to be stable, an
A-node must not have an incentive to leave the
coalition. In general, for any kb there will be a cer-
tain number of A-nodes, ka, that will join the coa-
lition. We have multiple equilibria.

Inequalities (13)–(17) can be used to infer the
following results:

Result 5. The larger the total number of equity-
oriented nodes (Nb), the higher the incentives for
A-nodes to join the coalition. Hence, for a given
kb, the number of cooperating A-nodes ka

increases in Nb.

Result 6. The more B-nodes join the coalition, the
smaller the incentive for A-nodes to do so. In equi-
librium, kb and ka are negatively correlated.
Result 7. The total cooperation level increases
with the number of B-types outside the coalition.
A joining B-node improves the payoffs only if it
does not drive out an A-node.

The rationale of Results 5 and 6 is the follow-
ing: if an A-node enters the coalition and the coa-
lition increases its cooperation efforts, B-nodes
outside the coalition increase their cooperation
activities as well and thereby additionally reward
the entering node.

If the number of such equity-oriented B-nodes
outside the coalition gets larger, this external re-
ward for joining a coalition increases and, there-
fore, the equilibrium coalition size increases.
Analogously, if B-nodes join the coalition, fewer
nodes outside the coalition reward the entering
A-node by an increase of their cooperation activi-
ties. Hence, the incentives for A-nodes to enter the
coalition decrease and the number of A-nodes that
are inside the coalition in equilibrium gets smaller.

Result 7 reflects the fact that the more nodes
cooperate, the higher the efficiency gains are and
the closer the aggregate cooperation level is to
the efficient one. The impact of A- and B-nodes
on the decision of the coalition, however, differs
in the following way: a joining A-node is interested
in the absolute payoff and, consequently, the re-
optimizing coalition increases its cooperation ef-
fort because the positive effect on one more node
is now taken into account. A joining B-node, how-
ever, is not primarily interested in the absolute
payoff, but in the equal share. Therefore, the coa-
lition will not increase the total cooperation level
that much because the B-node refrains from devi-
ating from the cooperation level of non-cooperat-
ing nodes. Consequently, the efficiency gains are
larger if an A-node enters the coalition than if a
B-node joins. Therefore, B-nodes are welcome in-
side a coalition only if their entering does not drive
out an A-node.
3.5. Discussion: coalition formation process and

the cooperation enforcement mechanism CORE

Self-interested, autonomous mobile nodes of an
ad hoc network may interact ‘‘rationally’’ to gain
and share benefits in stable (temporary) coalitions:
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this is to save costs by coordinating activities with
other nodes of the network. For this purpose, each
node determines the utility of its actions in a given
environment by an individual utility function. In
Section 3.1 we introduced a more sophisticated
model in which not only self-centered preferences
are taken into account to derive the individual
payoff of an action but also relative information
is used in order to find an extended set of possible
equilibrium points.

Results obtained with the proposed model are
promising: in a dynamic network formed by nodes
that follow the definition of utility given by the
ERC theory, depending on the node types, it is
possible to obtain stable coalitions of a relatively
large size and under certain circumstances, even
the grand coalition becomes feasible. Node types
are determined by the two parameters a and b
which represent the key factor of the coalition for-
mation process.

We believe that the reputation technique imple-
mented in CORE can be used as an effective
mechanism to impose a specific identical ERC
type for every node participating in a cooperative
setting as an ad hoc network. Indeed, the reputa-
tion measure introduced in [5] is compliant with
the incentive structure given by (1) and (2). Coop-
eration is made attractive from an individual
point of view because the cost of participating
to the network operation is compensated with a
higher reputation value, which is the pre-requisite
for a node to establish a communication with
other nodes in the network. On the other hand,
when the number of cooperating nodes increases,
the cost for participation is compensated by a
more connected network that in turn increases
the benefit of cooperation. Now, if the two
parameters a and b are represented as functions
of the reputation rni as defined in [5], then it is
possible to enforce a particular value to the a/b
ratio. Specifically it is possible to dynamically ad-
just the a/b ratio in order to be compatible with
Proposition 4. Thus, even the grand coalition is
stable and every node of the network cooperates
bearing the same costs and getting equal benefits
by choosing a fair operating point in which no
one deviates from the average cooperation level
chosen by the coalition.
The relation between a, b and rni is indirectly
proportional: the lower the reputation value
(meaning that the past strategy selected by the node
has been to reduce the cooperation level) the higher
will be factor b and the lower will be factor a thus
reducing the a/b ratio, and vice-versa.

The relation between the reputation value and
the ERC type of a node becomes more compli-
cated if we allow the presence of nodes with differ-
ent ERC types: modeling a network that allows
different ERC types is interesting when considering
mobile nodes with different capabilities such as dif-
ferent battery power and different computational
power.

However, in order to provide a formal assess-
ment of the efficiency of the reputation mechanism
proposed in CORE it is necessary to evaluate the
node model presented in the previous sections in
a dynamic setting: the reputation value is com-
puted based on the past strategies selected by the
nodes of the network and have an influence on
those nodes� future actions. Furthermore any var-
iation on the strategy selection phase of a node has
an impact on the strategies selected by neighboring
nodes: solutions to the dynamic coalition forma-
tion process still have to be examined.

We believe that the research we have conducted
so far has given some interesting results and pro-
poses a useful basis to study the coalition forma-
tion process of autonomous self-interested mobile
nodes by means of reputation mechanisms which
is, to the best of our knowledge, a rather unex-
plored domain. However, we think that it is possi-
ble to express the dynamic coalition formation
process using a more elegant and simple methodol-
ogy, which is a key requirement for studying dy-
namic games. The relatively recent literature on
the subject states that the models of coalition for-
mation may be classified into two main categories:
utility-based models, as it is largely favored by
game theory, and complementary-based models.
Up to now, most classic methods and protocols
for the formation of stable coalitions among ra-
tional agents follow the utility-based approach
and cover two main activities which may be inter-
leaved: the generation of coalition structures, that
is partitioning or covering the set of agents into
coalitions, and the distribution of gained benefit
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among the participants to each of the coalitions.
The future research direction we will take is to
prove that reputation mechanisms in general are
compliant to the so called Coalition Formation

Algorithm. Coalition formation algorithms are
those mechanisms that provide a feasible solution
to a cooperative game in coalitional structure:
there are several solution concepts and we will
focus on the so called Kernel-oriented solutions
[14,15]. Kernel-oriented coalitions are the most
suitable for our purpose because the related litera-
ture gives precise conditions for a coalition forma-
tion algorithm to be kernel-stable with a
polynomial complexity, as opposed to other solu-
tion/algorithms that are only of theoretical rele-
vance since they have exponential complexity.
4. Non-cooperative games approach

In an alternative approach, we investigated on
the characteristics of CORE by modeling the inter-
actions between the nodes of a MANET as a non-
cooperative game. In the following sections, we
will introduce a specific and well-known game
(the prisoner�s dilemma, PD) and explain how
and why this model is suitable to describe the deci-
sion making process that a mobile node would
undertake when participating to the ad hoc net-
work operation. Subsequent to the definition of
the model that describes the interaction between
decision-makers (nodes) involved in the game play,
we will extend our analysis to a particular instance
of games that goes under the name of repeated
games. Repeated (or iterated) games have been
exhaustively treated in the game theoretic litera-
ture [8–10,22–25] and interesting results concern-
ing the establishment of a cooperative behavior
will be presented. In particular, we will focus on
the strategy that a player 9 adopts to determine
whether to cooperate or not at each of the moves
in the iterated game and describe an important
strategy known as tit-for-tat (TFT) which has been
considered by a lot of game-theorist to be one of
9 In this paper we will adopt the word player and node as
synonyms.
the best strategies not only to promote coopera-
tion but also for the evolution of cooperation (a
definition of ‘‘evolution of cooperation’’ will be
given in the following sections). We will then de-
scribe how the CORE cooperation enforcement
mechanism can be translated into a strategy for a
player and compare it to the TFT strategy to
numerically prove the equivalence between CORE
and TFT. By further extending the game theoretic
concept applied to the classical iterated PD game
we will show how the performances of TFT and
its derivates (i.e. generous-TFT, GTFT) degrade
as noise is introduced in the model. In the follow-
ing sections we will describe how the introduction
of a noise factor allows grasping the undesirable
effects of using the promiscuous mode operation
of a wireless card as a basis for the monitoring
mechanism (the watchdog mechanism) and prove
that the CORE strategy outperforms all other
known strategies both for promoting cooperation
and for the evolution of cooperation. The numer-
ical results obtained through a simulation soft-
ware designed by [23] are stimulating the more
difficult task of providing a formal analysis of
the CORE strategy, which is part of our future
work.

4.1. System model

In order to describe the interaction between
nodes of a MANET and the decision making proc-
ess that results in a cooperative or selfish behavior
of the nodes we will use a classical game intro-
duced by Tucker [24, pp. 117–118]. In the classical
PD game, two players are both faced with a deci-
sion to either cooperate (C) or defect (D). The
decision is made simultaneously by the two players
with no knowledge of the other player�s choice
until the choice is made. If both cooperate, they re-
ceive some benefit (R). If both defect they receive a
specific punishment (P). However, if one defects,
and one cooperates, the defecting strategy receives
no punishment (T) and the cooperator a punish-
ment (S). The game is often expressed in the
canonical form in terms of pay-offs.

The PD game is a much studied problem due to
its far-reaching applicability in many domains. In
game theory, the prisoner�s dilemma can be viewed
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as a two-players, non-zero-sum, non-cooperative
and simultaneous move game. In order to have a
dilemma the following expressions must hold:

T > R > P > S;

R >
S þ T
2

:
ð18Þ

In our model, a MANET formed by N nodes is
considered as an N-player playground in which
randomly, any two nodes can meet. We suppose
that every node of the network has some data traf-
fic to be sent through some source route that is the
result of the execution of some routing protocol
(as an example the DSR protocol). We also sup-
pose that when any two nodes meet, at some time
period t, they both need to send some data packets
through each other, i.e. using each other as a relay
node. Before the actual process of sending a pack-
et, the two nodes have to take the decision whether
to cooperate or defect. By cooperating a node will
forward one (or more) data packet for the request-
ing node, whereas by defecting a node will not
relay data packets on behalf of the requesting
node. Instead of including an accurate description
of energetic costs, topology information, possible
interference and path information we will base
our model on some basic economic modeling. As
an illustrative and intuitive example, let us con-
sider two players (nodes) with some letters (data
messages) to send. For each letter leaving a player,
a stamp (energy cost for sending one data packet)
has to be used. When a letter is forwarded towards
its destination the player benefit is (arbitrarily)
fixed to 5: of course, the benefit for a successful
communication should be higher than the (ener-
getic) cost for sending the letter. So, for example,
if two players meet and both have a letter to send,
if the decision of a player is to cooperate, she will
have to spend two stamps (one for her letter, and
one for her opponent�s letter) and eventually re-
ceive a benefit of 5 if her opponent cooperated,
leading to a payoff equals to 3 in case the opponent
decided to cooperate and to a payoff equals to �2
in case the opponent decided to defect. This situa-
tion can be translated in a payoff matrix which
matches the one illustrated in Table 2 of the clas-
sical PD game.
Of course, it is arguable that such a simple
model can represent a real MANET, but we be-
lieve that the limitations imposed by our model
are greatly compensated by the consolidated theo-
retical results available in the literature for the
prisoner�s dilemma. Furthermore, we plan to ex-
tend the model in order to cope with a T-player
simultaneous move game where T < N thus taking
into account the cooperative strategy of nodes that
are part of an entire path from a data source to her
selected destination.

However, the key of the model presented in this
paper and any further extensions is the ‘‘willing-
ness to communicate’’ assumption: during every
play of the game (both in the basic PD and in
the iterated PD, as we will see in the next section)
both players engaged in the decision making proc-
ess (cooperate or not) are supposed to have some
data packets to be sent through the opponent
player. As we will see later this assumption is nec-
essary in order to implement a punishment mech-
anism for a non-cooperating node.

4.2. The iterated prisoner’s dilemma

The iterated version of the PD game, and in
general repeated games have been extensively stud-
ied in the literature and the interested reader could
refer to [10] in order to find a basic yet complete
introduction to the theory of games, equilibrium
concepts and iterated games. 10 In this paper we
will not focus on the basic results from game the-
ory applied to the PD (e.g. Nash-equilibrium of
the one shot PD game) but we will introduce some
concepts that will be used in the rest of the paper.

One surprising feature of many one-shot games
(i.e. games that are played only once) including the
PD game, is that the Nash-equilibrium is non-
cooperative: each player would prefer to fink (de-
fect) rather than to cooperate. However, in a more
realistic scenario (e.g. a MANET) a particular one
shot game can be played more than once; in fact, a
realistic game could even be a correlated series of
one shot games. In such iterated games an action



Table 2
Prisoner�s dilemma payoff matrix: (Panel A) general, (Panel B)
example

Player i Player j

Cooperate Defect

Panel A

Cooperate (R,R) (S,T)
Defect (T,S) (P,P)

Panel B

Cooperate (3,3) (�2,4)
Defect (4,�2) (0,0)
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chosen by a player early on can affect what other
players choose to do later on: repeated games
can incorporate a phenomena which we believe
are important but not captured when restricting
our attention to static, one shot games. In particu-
lar, we can strive to explain how cooperative
behavior can be established as a result of rational
behavior. In this section we will discuss repeated
games which are ‘‘infinitely repeated’’. This need
not mean that the game never ends, however. We
will see that this framework can be appropriate
for modeling situations in which the game eventu-
ally ends (with probability one) but the players are
uncertain about exactly when the last period is
(and they always believe there�s some chance the
game will continue to the next period).

In the following subsections we will introduce in
a more formal way some basic concepts related to
repeated games and infinitely repeated games. We
will then show the definition of a strategy for a
player and explain how to verify if a (simple) strat-
egy is an equilibrium for a game. A reader who is
familiar with game theory is invited to skip the fol-
lowing two Sections 4.2.1 and 4.2.2.

4.2.1. Repeated games theory

Consider a game G (which we will call the stage
game or the constituent game). Let the player set
be I = {1, . . . ,n}. In our present repeated-game
context it will be clarifying to refer to a player�s
stage game choices as actions rather than strate-
gies. (We will reserve ‘‘strategy’’ for choices in
the repeated game). So each player has a pure-

action space Ai. The space of action profiles is
A = Xi2IAi. Each player has a von Neumann–
Morgenstern utility function defined over the out-
comes of G, gi : A ! R, that in the particular case
of the two players PD game takes the form of a
payoff matrix as in Table 2.

Let G be played several times (perhaps an infi-
nite number of times) and award each player a
payoff which is the (discounted) sum of the payoffs
she got in each period from playing G. Then this
sequence of stage games is itself a game: a repeated

game.
Two statements are implicit when we say that in

each period we were playing the same stage game:
(a) for each player the set of actions available to
her in any period in the game G is the same regard-
less of which period it is and regardless of what ac-
tions have taken place in the past and (b) the
payoffs to the players from the stage game in any
period depend only on the action profile for G

which was played in that period, and this stage-
game payoff to a player for a given action profile
for G is independent of which period it is played.
Statements (a) and (b) are saying that the environ-
ment for our repeated game is stationary (or, alter-
natively, independent of time and history). This

does not mean the actions themselves must be chosen

independently of time or history.
We will limit our attention here to cases in

which the stage game is a one-shot, simultane-
ous-move game. Then we interpret (a) and (b)
above as saying that the payoff matrix is the same
in every period. We make the typical ‘‘observable
action’’ or ‘‘standard private monitoring’’ assump-
tion that the play which occurred in each repeti-
tion of the stage game is revealed to all the
players before the next repetition. Therefore even
if the stage game is one of imperfect information
(as it is in simultaneous-move games)––so that
during the stage game one of the players does
not know what the others are doing/have done
that period––each player does learn what the oth-
ers did before another round is played. This allows
subsequent choices to be conditioned on the past
actions of other players. We will see later in the
paper that if we make the assumption of ‘‘imper-

fect private monitoring’’ results can be significantly
different.

Before we can talk about equilibrium strategies
in repeated games, we need to get precise about



P. Michiardi, R. Molva / Ad Hoc Networks 3 (2005) 193–219 207
what a strategy in a repeated game is. We will find
it useful when studying repeated games to consider
the semi-extensive form. This is a representation in
which we accept the normal-form description of
the stage game but still want to retain the temporal
structure of the repeated game.

Let the first period be labeled t = 0. The last
period, if one exists, is period T, so we have a total
of T + 1 periods in our game. We allow the case
where T = 1, i.e. we can have an infinitely re-
peated game.

We will refer to the action of the stage game G

which player i executes in period t as ati. The action
profile played in period t is just the n-tuple of indi-
viduals� stage-game actions:

at ¼ ðat1; . . . ; atnÞ: ð19Þ
We want to be able to condition the players�

stage-game action choices in later periods upon ac-
tions taken earlier by other players. To do this we
need the concept of a history: a description of all
the actions taken up through the previous period.
We define the history at time t to be

ht ¼ ða0; a1; . . . ; at�1Þ: ð20Þ
In other words, the history at time t specifies

which stage-game action profile (i.e. combination
of individual stage-game actions) was played in
each previous period. Note that the specification
of ht includes within it a specification of all previ-
ous histories h0,h1, . . . ,ht�1. For example, the his-
tory ht is just the concatenation of ht�1 with the
action profile at�1; i.e. ht = (ht�1;at�1). The history
of the entire game is hT+1 = (a0,a1, . . . ,aT). Note
also that the set of all possible histories ht at time
t is just

At ¼
Yt�1

j¼0

A; ð21Þ

the t-fold Cartesian product of the space of stage-
game action profiles A.

To condition our strategies on past events, then,
is to make them functions of history. So we write
player i�s period-t stage-game strategy as the func-
tion sti, where ati ¼ stiðh

tÞ is the stage-game action
she would play in period t if the previous play
had followed the history ht. A player�s stage-game
action in any period and after any history must be
drawn from her action space for that period, but
because the game is stationary her stage-game ac-
tion space Ai does not change with time. The per-
iod-t stage game strategy profile st is

st ¼ ðst1; . . . ; stnÞ: ð22Þ
So far we have been referring to stage-game strat-
egies for a particular period. Now we can write,
using these stage-game entities as building blocks,
a specification for a player�s strategy for the re-
peated game. We write player i�s strategy for the
repeated game as

si ¼ ðs0i ; s1i ; . . . ; sTi Þ; ð23Þ
i.e. a (T + 1)-tuple of history-contingent player-i
stage-game strategies. Each sti takes a history
ht 2 At as its argument. The space Si of player-i
repeated-game strategies is the set of all such
(T + 1)-tuples of player-i stage game strategies
sti : A

t ! Ai.
We can write a strategy profile s for the whole

repeated game in two ways. We can write it as
the n-tuple profile of players� repeated-game
strategies:

s ¼ ðs1; . . . ; snÞ ð24Þ
as defined in (23). Alternatively, we can write the
repeated-game strategy profile s as

s ¼ ðs0; s1; . . . ; sT Þ ð25Þ
i.e. as a collection of stage-game strategy profiles,
one for each period, as defined in (22).

Let us see how this repeated game is played out
once every player has specified her repeated-game
strategy si. It is more convenient at this point to
view this repeated-game strategy profile as ex-
pressed in (25), i.e. as a sequence of T + 1 his-
tory-dependent stage-game strategy profiles.
When the game starts, there is no past play, so
the history h0 is degenerate: every player executes
her a0i ¼ s0i stage-game strategy from (23). This
zeroth period play generates the history h1 = (a0),
where a0 ¼ ða01; . . . ; a0nÞ. This history is then re-
vealed (or monitored by the players themselves)
to the players so that they can condition their per-
iod-1 play upon the period-0 play. Each player
then chooses her t = 1 stage-game strategy s1i ðh

1Þ.
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Consequently, in the t = 1 stage game the strategy
profile a1 ¼ s1ðh1Þ ¼ ðs11ðh

1Þ; . . . ; s1nðh
1ÞÞ is played.

In order to form the updated history this stage-
game strategy profile is then concatenated onto
the previous history: h2 = (a0,a1). This new history
is revealed to all the players and they each then
choose their period-2 stage-game strategy s2i ðh2Þ,
and so on. We say that hT+1 is the path generated
by the repeated-game strategy profile s.

Let us now consider the payoff function of the

repeated game. We can think of the players as
receiving their stage-game payoffs period-by-peri-
od. Their repeated game payoffs will be an addi-
tively separable function of these stage-game
payoffs. Right away we see a potential problem:
if the game is played an infinite number of times,
there is an infinite number of periods and, hence,
of stage-game payoffs to be added up. In order
that the players� repeated-game payoffs be well de-
fined we must ensure that this infinite sum does not
blow up to infinity. We ensure the finiteness of the
repeated-game payoffs by introducing discounting

of future payoffs relative to earlier payoffs. Such
discounting can be an expression of time prefer-
ence and/or uncertainty about the length of the
game. We introduce the average discounted payoff
as a convenience which normalizes the repeated-
game payoffs to be ‘‘on the same scale’’ as the
stage game payoffs.

Infinite repetition can be the key for obtaining
behavior in the stage games which could not be
equilibrium behavior if the game were played once
or a known finite number of times. For example,
defection in every period by both players is the un-
ique equilibrium in any finite repetition of the
PD. 11 When repeated an infinite number of times,
however, cooperation in every period is an equilib-
rium if the players are ‘‘sufficiently patient’’.

When studying infinitely repeated games we are
concerned about a player who receives a payoff in
each of infinitely many periods. In order to repre-
sent her preferences over various infinite payoff
streams we want to meaningfully summarize the
desirability of such a sequence of payoffs by a sin-
11 See Theorem 4 in ‘‘Repeated Games’’ handouts by Ratliff
[10].
gle number. A common assumption is that the
player wants to maximize a weighted sum of her
per-period payoffs, where she weights later periods
less than earlier periods. For simplicity this
assumption often takes the particular form that
the sequence of weights forms a geometric progres-
sion: for some fixed d 2 (0,1), each weighting fac-
tor is d times the previous weight. d is called her
discount factor. If in each period t player i receives
the payoff uti, we could summarize the desirability
of the payoff stream u0i ; u

1
i ; . . . by the numberX1

t¼0

dtuti: ð26Þ

Such an intertemporal preference structure has the
desirable property that the infinite sum of the
weighted payoffs will be finite (since the stage-
game payoffs are bounded). A player would be
indifferent between a payoff of xt at time t and a
payoff of xt+s received s periods later if

xt ¼ dsxtþs: ð27Þ
A useful formula for computing the finite and

infinite discounted sums we will use later in this
section isXT 2

t¼T 1

dt ¼ dT 1 � dT 2þ1

1 � d
; ð28Þ

which, in particular, is valid for T2 = 1.
If we adopted the summation (26) as our play-

ers� repeated-game utility function, and if a player
received the same stage-game payoff vi in every
period, her discounted repeated-game payoff,
using (28), would be vi/(1 � d). It is however more
convenient to transform the repeated-game payoffs
to be ‘‘on the same scale’’ as the stage-game pay-
offs, by multiplying the discounted payoff sum
from (26) by (1 � d). So we define the average dis-
counted value of the payoff stream u0i ; u

1
i ; . . . by

ð1 � dÞ
X1
t¼0

dtuti: ð29Þ

It is often convenient to compute the average
discounted value of an infinite payoff stream in
terms of a leading finite sum and the sum of a trail-
ing infinite substream. For example, say that the
payoffs vti a player receives are some constant



Spiteful

• Cooperate in the first period.
• In later periods, cooperate if both players

have always cooperated.
• However, if either player has ever defected,

defect for the remainder of the game.

Table 3
Modified PD payoff matrix

Player i Player j

Cooperate Defect

Cooperate (1,1) (�1,2)
Defect (2,�1) (0,0)
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payoff v0
i for the first t periods, i.e. 0,1,2, . . . , t � 1,

and thereafter she receives a different constant
payoff v00

i in each period t, t + 1, t + 2, . . . The aver-
age discounted value of this payoff stream is

ð1 � dÞ
X1
s¼0

dsvs
i ¼ ð1 � dÞ

Xt�1

s¼0

dsvs
i þ
X1
s¼t

dsvs
i

 !

¼ ð1 � dÞ v0
ið1 � dtÞ
1 � d

þ v00
i d

t

1 � d

� �
¼ ð1 � dtÞv0

i þ dtv00
i : ð30Þ

It is possible to see that the average discounted
value of this stream of bivalued stage-game payoffs
is a convex combination of the two stage-game
payoffs. We can iterate this procedure in order to
evaluate the average discounted value of more
complicated payoff streams. Another useful exam-
ple is when a player receives v0

i for the first t peri-
ods, then receives v00

i only in period t and receive
v000
i every period thereafter. The average discounted
value of the stream beginning in period t (dis-
counted to period t) is: ð1 � dÞv00

i þ dv000
i . Substitut-

ing this for v00
i in (30), we find that the average

discounted value of this three-valued payoff stream
is

ð1 � dtÞv0
i þ dt½ð1 � dÞv00

i þ dv000
i 	: ð31Þ

We have now defined all the formalism needed
to examine the equilibrium of a (infinitely) re-
peated PD game and to verify if a predefined strat-
egy constitutes an equilibrium. The various
definitions of equilibrium and the related theorems
can be found in [10].

4.2.2. Cooperation in the repeated prisoner’s

dilemma

In the one-shot PD, the players cannot avoid
choosing their dominant strategy defect (see Table
3). In order to make the following analysis simpler,
consider the following payoff matrix.

It is easy to verify that conditions (18) hold.
Even when this game is finitely repeated, be-

cause the stage game has a unique Nash-equilib-
rium, the unique subgame-perfect equilibrium
has both players defecting in every period. How-
ever, when the players are sufficiently patient it is
possible to sustain cooperation (i.e. keeping
‘‘Cooperate’’) in every period as a subgame-perfect
equilibrium of the infinitely repeated game. First
we will see that such cooperation is a Nash-equi-
librium of the repeated game. We will then show
that this cooperation is a subgame-perfect
equilibrium.

When an infinitely repeated game is played,
each player i has a repeated-game strategy si,
which is a sequence of history-dependent stage-
game strategies sti; i.e. si ¼ ðs0i ; s1i ; . . .Þ, where each
sti : A

t ! Ai. The n-tuple of individual repeated-
game strategies is the repeated-game strategy pro-
file s = (s1, s2, . . . , sn).

As a fundamental example, let us consider a
particular strategy that a player could follow and
which is sufficient to sustain cooperation. This
strategy is also known as the spiteful strategy.
More precisely and formally, it is possible to
write player i �s repeated-game strategy �si ¼
ð�s0i ;�s1i ; . . .Þ as the sequence of history-dependent
stage-game strategies such that in period t and
after history ht,

�stiðhtÞ ¼ C; t ¼ 0 or ht ¼ ððC;CÞtÞ;
D; otherwise:

�
ð32Þ

First, we will show that for sufficiently ‘‘patient
players’’ the strategy profile �s ¼ ð�s1;�s2Þ is a



Nash-equilibrium of the repeated game. Then we
will show that for the same required level of pa-
tience these strategies are also a subgame-perfect
equilibrium.

Now, if both players conform to the alleged
equilibrium prescription, they both play ‘‘cooper-
ate’’ at t = 0. Therefore at t = 1, the history is
h1 = (C,C); so they both play ‘‘cooperate’’ again.
Therefore at t = 2, the history is h2 =
((C,C), (C,C)), so they both play ‘‘cooperate’’
again. And so on. . . The path of s is the infinite se-
quence of cooperative action profiles ((C,C),
(C,C), . . .). The repeated-game payoff to each
player corresponding to this path is trivial to cal-
culate: they each receive a payoff of 1 in each
period, therefore the average discounted value of
each player�s payoff stream is 1.

Can player i gain from deviating from the re-
peated-game strategy �si given that player j is faith-
fully following �sj? Let t be the period in which
player i first deviates. She receives a payoff of 1
in the first t periods 0,1, . . . , t � 1. In period t,
she plays ‘‘defect’’ while her conforming opponent
played ‘‘cooperate’’, yielding player i a payoff of 2
in that period. This defection by player i now trig-
gers an open-loop ‘‘defect’’ always response from
player j. Player i�s best response to this open-loop
strategy is to ‘‘defect’’ in every period herself. Thus
she receives zero in every period t + 1, t + 2, . . . To
calculate the average discounted value of this pay-
off stream to player i we can refer to (31), and sub-
stitute v0

i ¼ 1, v00
i ¼ 2, and v000

i ¼ 0. This yields
player i�s repeated-game payoff when she defects
in period t in the most advantageous way to be
1 � dt(2d � 1). This is weakly less than the equilib-
rium payoff of 1, for any choice of defection period
t, as long as d P 1

2
. Thus we have defined what we

meant by ‘‘sufficiently patient’’: cooperation in this
PD game is a Nash-equilibrium of the repeated
game as long as d P 1

2
.

To verify that �s is a subgame-perfect equilib-
rium of the repeated prisoners� dilemma it is neces-
sary to check that this strategy profile�s restriction
to each subgame is a Nash-equilibrium of that sub-
game. Consider a subgame, beginning in period s
with some history hs. What is the restriction of �si
to this subgame? Denoting the restriction by ŝi
we have
ŝtiðĥ
tÞ ¼ �stþs

t ðhs; ĥ
tÞ

¼ C; hs ¼ ððC;CÞsÞ and ĥ
t ¼ ððC;CÞtÞ;

D; otherwise:

(
ð33Þ

We can partition the subgames of this game, each
identified by a beginning period s and a history hs,
into two classes: (A) those in which both players
chose ‘‘cooperate’’ in all previous periods, i.e.
hs = ((C,C)s), and (B) those in which a defection
by either player has previously occurred. For those
subgames in class (A), the sequence of restrictions
ŝtiðĥ

tÞ from (33) reduces to the sequence of original
stage-game strategies �stiðh

tÞ from (32), i.e. for all s
and hs = ((C,C)s) we have

ŝtiðĥ
tÞ ¼ C; hs ¼ ððC;CÞsÞ and ĥ

t ¼ ððC;CÞtÞ
D; otherwise

(

¼ C; ĥ
t ¼ ððC;CÞtÞ

D; otherwise ¼ �stiðh
tÞ

(
: ð34Þ

Because �s is a Nash-equilibrium strategy profile of
the repeated game, for each subgame hs in class
(A), the restriction ŝ is a Nash-equilibrium strategy
profile of the subgame when d P 1

2
.

For any subgame hs in class (B), hs 5 ((C,C)s).
Therefore the restriction ŝi of �si specifies ŝ

t
i ¼ D for

all t 2 {0,1, . . .}. In other words, in any subgame
reached by some player having ‘‘defected’’ in the
past, each player chooses the open-loop strategy
‘‘defect always’’. Therefore the repeated-game
strategy profile ŝ played in such a subgame is an
open-loop sequence of stage-game Nash-equili-
bria. From Theorem 1 of [10] we know that this
is a Nash-equilibrium of the repeated game and
hence of this subgame. We have shown that for
every subgame the restriction of �s to that subgame
is a Nash-equilibrium of that subgame for d P 1

2
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shown to be an equilibrium strategy (both a Nash-
equilibrium for the whole repeated game and a
subgame perfect equilibrium) for the prisoner�s di-
lemma. Axelrod and Hamilton [19–21] used a
computer tournament to numerically detect strate-
gies that would favor cooperation among players
engaged in the iterated PD. In a first round, 14
more or less sophisticated strategies and one to-
tally random strategy competed against each other
for the highest average scores in an iterated PD of
200 moves. Unexpectedly, a very simple strategy
did outstandingly well:
TIT-FOR-TAT

Cooperate on the first period and then
copy your opponent�s last move for all subse-
quent periods
This strategy was called Tit-for-tat (TFT)
and became the founder of an ever growing
amount of successful strategies. To study the
behavior of strategies from a numerical point of
view, two kinds of computation can be done:

• The first one is a simple round robin tourna-
ment, in which each strategy meets all other
strategies. Its final score is then the sum (not
the discounted sum) of all scores done in each
confrontation. At the end, the strategy�s
strength measurement is given by its range in
the tournament.

• The second type of numerical analysis is a sim-
ulated ecological evolution, in which at the
beginning there is a fixed population including
the same quantity of each strategy. A round
robin tournament is made and then the popula-
tion of bad strategies is decreased whereas good
strategies obtain new elements. The simulation
is repeated until the population has been stabi-
lized, i.e. the population does not change
anymore.
A good strategy is then a strategy which stays
alive in the population for the longest possible
time, and in the biggest possible proportion.
This kind of evaluation quotes the robustness

of strategies.
Before the introduction of CORE as a strategy
for the iterated PD, it is important to detail the
computation method for ecological evolution, for
example involving three strategies. Suppose that,
initially, the population is composed of three strat-
egies A, B, C. At generation n each strategy is rep-
resented by a certain number of players: Wn(A)
using A, Wn(B) using B and Wn(C) using C.

The payoff matrix of two-by-two meeting be-
tween A, B and C is computed and is thus known
(see Table 2). V(AjB) is the score of A when it
meets B, etc. Let us suppose that the total size of
the population is fixed and constant. Let is note
it P:
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8i 2 ½1;1½; P ¼ W iðAÞ þ W iðBÞ þ W iðCÞ: ð35Þ
The computation of the score (distributed

points) of a player using a fixed strategy at gener-
ation n is then
gnðAÞ ¼ W nðAÞV ðAjAÞ þ W nðBÞV ðAjBÞ
þ W nðCÞV ðAjCÞ � V ðAjAÞ;

gnðBÞ ¼ W nðAÞV ðBjAÞ þ W nðBÞV ðBjBÞ
þ W nðCÞV ðBjCÞ � V ðBjBÞ;

gnðCÞ ¼ W nðAÞV ðCjAÞ þ W nðBÞV ðCjBÞ
þ W nðCÞV ðCjCÞ � V ðCjCÞ:

ð36Þ

Note that because of the subtractions the compu-
tation of g cannot be simplified. The total points
distributed to all involved strategies are

tðnÞ ¼ W nðAÞgnðAÞ þ W nðBÞgnðBÞ
þ W nðCÞgnðCÞ: ð37Þ

The size of each sub-population at generation
n + 1 is finally

W nþ1ðAÞ ¼ PW nðAÞgnðAÞ
tðnÞ ;

W nþ1ðBÞ ¼ PW nðBÞgnðBÞ
tðnÞ ;

W nþ1ðCÞ ¼ PW nðCÞgnðCÞ
tðnÞ :

ð38Þ



CORE

• Cooperate on the first move.
• In each period, observe the past B oppo-

nent�s moves and build a vector
b
! ¼ ðb1; . . . ; bk; . . . ; bBÞ where each ele-
ment equals +1 for a cooperation and �1
for a defection.

• Evaluate reputation as reputation ¼
1
B

P
kbk.

• If reputation P 0 Cooperate else Defect.
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All division being rounded to the nearest lower
integer.

Classical results on the iterated PD, which have
been emphasized by Axelrod in [38] show that to
be good a strategy has to

• Not be the first to defect.
• Be reactive.
• Forgive.
• Be simple.

The TFT strategy which satisfies all those cri-
teria, has, since Axelrod�s book, been considered
to be one of the best strategies not only for
cooperation but also for evolution of
cooperation.
12 The reader should be informed that in this paper we
consider a limited version of the CORE mechanism in which
reputation is evaluated through a simple average over the past
observations made through the watchdog mechanism. A more
faithful definition of the CORE strategy is reserved for our
future work.
4.4. CORE as a complex strategy for the

iterated prisoner�s dilemma

It is now important to define the scope of our
analysis. After a brief introduction on the theory
behind the study of the iterated PD game, we are
focusing on the numerical analysis (through a
simulation software [24]) of the features presented
by some specific strategies that the players of the
iterated PD should follow in order to promote
cooperation. Furthermore, we want to compare
some of the strategies available in the game theo-
retic literature and known to be the ‘‘best’’ strat-
egies both from a cooperation point of view and
from an evolutionary point of view with the strat-
egy derived from the CORE cooperation enforce-
ment mechanism. We suggest the reader to refer
to [6] in order to grasp the details and the func-
tioning of CORE.

Our claim is that the CORE strategy can be
considered equivalent to the TFT strategy under
certain circumstances (namely when the reputation
buffer is of size 1). Furthermore, we will show
through the evolutionary simulation outlined in
Section 4.3, that the CORE strategy outperforms
over all the other analyzed strategies when the
assumption of ‘‘perfect private monitoring’’ is re-
placed by the ‘‘imperfect private monitoring’’
assumption.
The CORE strategy 12 can be defined as
follows:
We want to show now that the TFT strategy
represents a particular case of the CORE strategy.
Indeed, if we set B = 1 it means that only one
observation over the opponent�s past moves is
taken into account to build the reputation infor-
mation. This implies that if the opponent cooper-
ated in the last move her reputation will be
positive and the player will chose too cooperate.
Vice versa, if the last opponent�s move was a defec-
tion, the reputation would be negative and the re-
sponse of the player would be to defect. This is
exactly what the TFT strategy implies: cooperate
on the first move and do what the opponent did
in the previous move.

In this paper an analytical result stating that the
CORE strategy is an equilibrium strategy will not
be presented as the work in this direction is in pro-
gress: however we believe that the analysis will be
facilitated thanks to the equivalence of the TFT
and the CORE strategy.

In the following subsections we present some re-
sults obtained through evolutionary simulations
using the iterated PD software available in [34].
The CORE strategy has been coded and added
up to the list of available strategies in the software.
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Fig. 1. Evolutionary simulation of complex strategies for the iterated PD with perfect monitoring.
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4.4.1. Simulations with the ‘‘perfect private

monitoring’’ assumption

We present here the results of the evolutionary
simulation involving three strategies when the
standard perfect monitoring assumption is made.
As described in Section 4.3, suppose that, initially,
the population is composed of five strategies tit-
for-tat, spiteful, CORE, all-C (cooperate
always) and all-D (defect always). Initially, each
strategy is represented by a certain number of
players: 100 players using each of the mentioned
strategies. As it is possible to see in Fig. 1, after five
generations the all-D strategy disappears: the
three 13 winning strategies are equivalent for pro-
moting cooperation and, more important, for the
evolution of cooperation. This implies that the
winning strategies obtained the same payoff in a
two-by-two round robin tournament and can be
considered equivalent from an evolutionary point
of view.

4.4.2. Simulations with the ‘‘imperfect private
monitoring’’ assumption

The majority of work in the iterated prisoner�s
dilemma has focused on games in a noise-free envi-
13 Note that we are not considering the all-C as a winning
strategy because of its history independent nature.
ronment, i.e. there is no danger of a signal being
misinterpreted by the opponent or the message
being damaged in transit. This assumption of a
noise-free environment is not necessarily valid if
one is trying to model real-world scenarios. As a
specific example, when considering interactions be-
tween two nodes in a MANET where the behavior
of a node follows the game theoretical model im-
posed by the prisoner�s dilemma, it would be inter-
esting to consider errors due to the watchdog
mechanism. The interested reader should refer to
[1] in order to understand intrinsic problems of
the watchdog mechanism and the promiscuous
mode operation of wireless cards. Specifically,
the watchdog mechanism can be thought of as
the private monitoring assumption in a two-play-
ers iterated prisoner dilemma: it is thanks to the
watchdog mechanism (private monitoring) that a
node (player) can infer in any period the behavior
(opponent�s past moves) of her neighbor and de-
cide which actions needs to be taken (strategy).

There are different means that can be chosen to
introduce noise to the simulation:

• mis-implementation (when the player makes a
mistake implementing its choice),

• misperception (when one player misperceives the
other player�s signal or choice).
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In this paper we will concentrate on mispercep-
tion noise as we believe it significantly linked to the
problems introduced by the watchdog mechanism.

Kahn and Murnighan [25] find that in experi-
ments dealing with prisoner�s dilemma in noisy
environments, cooperation is more likely when
players are sure of each other�s payoffs. Miller�s
experiments in genetic algorithms applied to the
prisoner�s dilemma results in the conclusion that
cooperation is at its greatest when there is no noise
in the system and that this cooperation decreases
as the noise increases [26]. Some ideas to promote
cooperation in noisy environments have been pos-
ited by Axelrod; these include genetic kinship,
clustering of like strategies, recognition, maintain-
ing closeness when recognition capabilities are lim-
ited or absent (e.g limpets in nature), increasing
the chance of future interactions (certain social
organizations, hierarchies in companies etc.),
changing the pay-offs, creating social norms where
one learns cooperation. Hoffman [27] reports that
results are sensitive to the extent to which players
make mistakes either in the execution of their
own strategy (mis-implementation noise) or in
the perception of opponent choices (misperception
noise).

In particular, cooperation is vulnerable to noise
as it is supported by conditional strategies. For
example, in a game between two TFTs, a single er-
ror would trigger a series of alternating defection.
A number of authors confirm the negative effect of
noise of TFT and find that more forgiveness pro-
motes cooperation in noisy environments [28,29].

As described in Section 4.4.1, we executed an
evolutionary simulation involving five strategies
when misperception noise was taken into account:
we decided to set the noise to the value of 10% and
we took the average population size over five sim-
ulation runs. Hundred players for each of the fol-
lowing strategies competed in a round-robin
tournament as described in Section 4.3: tit-

for-tat, spiteful, CORE, gradual and
soft-majo. 14 As it is possible to observe in
Fig. 2, the CORE strategy outperforms and results
14 The gradual and soft-majo strategies are described in
[23].
to be the most evolutionary stable and robust
strategy among all the population (we believe
though that exceptions especially constructed in
which performances of CORE are not so outstand-
ing are possible but are seldom and not easy to
obtain).

The reason why CORE performs better than
the other strategies when the imperfect monitoring
assumption is made can be explained as follows:
by adopting the CORE strategy, a node base her
decision of whether to cooperate or not using a
certain amount of observations made on the oppo-
nents past moves as defined by the B parameter.
Thus, the reputation measure evaluated by the
node takes into account more than one observa-
tion and is less sensible to any misperception noise.
Furthermore, in its advanced version (which has
not been implemented in the simulations, though),
the CORE strategy also weights the past B obser-
vations giving more relevance to past observations
than recent ones. It is intuitive to realize that a
transient misbehavior is filtered out by the reputa-
tion mechanism that makes CORE more flexible
and ‘‘forgiving’’ in presence of temporary misbe-
havior or a momentary high percentage of noise.
A specific example of such a situation can be found
when thinking of a communication between nodes
of a MANET in presence of obstacles or high
interference.

In Fig. 3, two populations of 100 members
adopt respectively the CORE and the TFT strat-
egy. The noise value has been set to 20% and 10
rounds of simulations have been executed in order
to take average values of the evolution of popula-
tion sizes. It is possible to observe that both strat-
egies are evolutionary stable, in the long run;
however, CORE is the winning strategy as the
population size of players adopting it increases at
each new generation, as defined in Section 4.3.
Furthermore, Fig. 3 shows that the reputation buf-
fer size (B) and both the stability condition and
population size are directly related. As B increases,
stability is reached at a lower generation number
(i.e. earlier) and the population size of players
adopting the CORE strategy grows faster. We be-
lieve however that these interesting results have to
be evaluated in an analytical way: the fine-tuning
of CORE parameters (such as B and the frequency
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at which observations are made) would require a
laborious empirical study if carried out only by
means of evolutionary simulations. We plan to
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5. Conclusions

In this paper we presented two different ap-
proaches based on game theory to assess the fea-
tures of the CORE cooperation enforcement
mechanism. Although the two methods described
in this paper focus on CORE as a specific mecha-
nism, some conclusions can be drawn from this
analysis towards the design of cooperation
enforcement mechanisms in general.

With the ‘‘cooperative approach’’ we intro-
duced the concept of coalition of cooperating
nodes as a subset of the nodes forming the net-
work that exhibit a cooperative behavior. We then
demonstrated that when cooperation is enforced
through a mechanism like CORE the guaranteed
size of a coalition of cooperating nodes is at least
half of the size of the network. Furthermore, we
were able to infer the necessary conditions for a
node to join the coalition of cooperating nodes,
as a function of the ERC-types. The main limita-
tion of this approach derives from an intuitive rep-
resentation of the CORE mechanism in the GT
model. However, we believe that the ‘‘cooperative
games’’ method is especially suitable to study the
dynamics of coalition formation among a large
number of nodes thus we plan to further investi-
gate on a faithful representation of the CORE
mechanism in this model.

On the other hand, the results provided by the
‘‘non-cooperative’’ approach better characterize
CORE with respect to other mechanisms in a real-
istic setting. We were able to demonstrate the
equivalence between the ‘‘TFT’’ strategy and
CORE: precisely TFT can be thought of as a spe-
cial case of the CORE strategy. Moreover, in order
to represent a more realistic scenario for the execu-
tion of a (infinitely) repeated game we introduced a
noise factor, which affects the players (nodes) per-
ception of the opponents past moves. The ‘‘imper-
fect private monitoring’’ assumption allowed to
model in a realistic way the watchdog mechanism
used by CORE (and by most of the available coop-
eration enforcement mechanisms) as it is known to
be particularly unreliable. We showed through
evolutionary simulations that the CORE strategy
outperforms all other studied strategies in a noisy
environment for its stability and robustness. As a
future research, we plan to extend the system
model in order to take into account multiple play-
ers involved in the same decision making process
in order to overcome the limitations due to a
pair-wise interaction.
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Appendix A. Proof of Proposition 2

We have to show that d(k) > 0 for k > N/2.
Remember that in (4) the denominator of d(k) is

positive due to Assumption 1. That is, d(k) > 0 if
the numerator of (4) is positive. Remember also
that we assumed rð1=N � xÞ 6 rð1=N þ xÞ; 8x 2
½0; 1=N 	.

The numerator in (4) is positive if r(cooper-
ate) > r(defect). This is the case when Eq. (7) is
satisfied.

Let us proceed by showing that d(k) < 0 for
k < N/2 � 1.

It is possible to rewrite Eq. (7) as follows:

Bðk þ 1ÞCðkÞNk þ BðkÞCðk þ 1ÞNðk þ 1 � NÞ
þ CðkÞCðk þ 1Þ Nk � 2kðk þ 1Þ½ 	 < 0;
or

Bðk þ 1ÞCðkÞ N
k þ 1

þ BðkÞCðk þ 1ÞN k þ 1 � N
kðk þ 1Þ

þ CðkÞCðk þ 1Þ N
k þ 1

� 2

� �
< 0; ðA:1Þ

Bðk þ 1ÞCðkÞ N
k þ 1

� BðkÞCðk þ 1ÞN
k

� �
þ NBðkÞ

k
� CðkÞ

� �
Cðk þ 1Þ 2 � N

k þ 1

� �
< 0:

ðA:2Þ
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Eq. (A.2) can also be rewritten as

Bðk þ 1Þ
BðkÞ � ðk þ 1ÞCðk þ 1Þ

kCðkÞ

� �
þ ðk þ 1ÞCðk þ 1Þ

� 1

kCðkÞ � 1

NBðkÞ

� �
2 � N

k þ 1

� �
< 0: ðA:3Þ

Now, from the monotonicity and concavity of B( )
it follows that Bðk þ 1Þ=ðk þ 1Þ < BðkÞ=k.

Furthermore, the total cost of cooperation in-
creases kC(k) in k. Therefore,

Bðk þ 1Þ
BðkÞ � ðk þ 1ÞCðk þ 1Þ

kCðkÞ 6
k þ 1

k
� 1 ¼ 1

k
:

Since it has also been assumed that payoffs are
non-negative, B(k) P C(k). Thus

ðk þ 1ÞCðk þ 1Þ 1

kCðkÞ � 1

NBðkÞ

� �
P

ðk þ 1ÞCðk þ 1Þ
kCðkÞ

N � k
N

P
N � k
N

: ðA:4Þ

We therefore obtain

Bðk þ 1Þ
BðkÞ � ðk þ 1ÞCðk þ 1Þ

kCðkÞ

� �
þ ðk þ 1ÞCðk þ 1Þ 1

kCðkÞ � 1

NBðkÞ

� �
2 � N

k þ 1

� �
6

1

k
þ N � k

N
2 � N

k þ 1

� �
¼ Nðk þ 1Þ þ 2ðN � kÞkðk þ 1Þ � ðN � kÞNk

Nkðk þ 1Þ :

The numerator equals: �2k3 + (3N � 2)k2 �
N(N � 3)k + N which can be shown to be negative
for 1 6 k < N/2 � 1, as long as N > 8.

Hence for N > 8 we have that the general condi-
tions for a Nash-equilibrium of the ERC-PD game
d(k* � 1) > 0 are satisfied for k > N/2.

NOTE: the conditionN > 8 can be removed if we
assume that the total cost of cooperation increases
more than the total benefits gained by defecting,
i.e.: ðk þ 1ÞCðk þ 1Þ=kCðkÞ > NBðk þ 1Þ=NBðkÞ.
Appendix B. Proof of Proposition 3

We have to show that in the cooperation
game for ERC preferences, the Nash-equilibrium
is given by solving the expression B 0(Nq*) �
C 0(q*) = 0. We then show that the Nash-equilib-
rium point is symmetrical as long as at least one
node draws utility from its absolute payoff (ai > 0).

Let us first study the two extreme cases, ai = 0
and bi = 0, respectively:

• For bi = 0, i.e. a player interested only in her
absolute payoff, the first order condition (8 or
9) reduces to: B 0(Q) � C 0(qi) = 0.

• For ai = 0, the node is solely interested in get-
ting the equal payoff share. Thus, it would
choose qi to satisfy: NCðqiÞ ¼

P
jCðqjÞ. Further-

more, when ai = 0, condition (8) also reduces to
B 0(Q) � C 0(qi) = 0.
Indeed, bi and r 0( ) are positive by definition
and the second summand reduces toP

j
yj � yiP
j
y2j

B0ðQÞ �

P
i6¼j

yjP
j
y2j

C0ðqiÞ

264
375 ¼ 0;

which can be simplified as B0ðQÞ � C0ðqiÞ ¼ 0:

For ai, bi 5 0 the chosen cooperation level is
between the levels for those extreme cases: the first
order condition must be satisfied for all nodes
simultaneously. Since r 0(ri) = 0 when ri ¼ 1=N
by assumption, it follows that there is a symmetric

equilibrium where all nodes choose the same coop-
eration level, i.e. ri = 1/N for all types ai/bi, for
i = 1, . . . ,N.

The resulting cooperation level q� is given by
solving the condition: B 0(Nq*) � C 0(q*) = 0.

Let us prove by contradiction (reductio ad

absurdum) that there is an asymmetric equilibrium,
i.e. some nodes receive less, and others more than
the equal share.

In this case, on the one hand, ri < 1/N implies
that r 0(ri) > 0, so from Eq. (8), we obtain

B0ðQÞ � C0ðqiÞ > 0: ð8aÞ
On the other hand, for ri > 1/N we have r 0(ri) < 0,
and therefore Eq. (9) implies

B0ðQÞ � C0ðqiÞ < 0: ð9aÞ

Inequalities (8a) and (9a) imply that a node which
gets more than the equal share has larger marginal
cooperation costs (C 0(qi)) than nodes that receive
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less, which contradicts the assumed payoff
distribution.

Hence, only symmetric equilibrium exists. If
ai > 0 for at least one node, we get B 0(Nq) �
C 0(q) = 0 from Eq. (8).
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