
722 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2005

An Analytical Approach to the Study of Cooperation
in Wireless Ad Hoc Networks

Vikram Srinivasan, Member, IEEE, Pavan Nuggehalli, Member, IEEE, Carla-Fabiana Chiasserini, Member, IEEE, and
Ramesh R. Rao, Member, IEEE

Abstract—In wireless ad hoc networks, nodes communicate with
far off destinations using intermediate nodes as relays. Since wire-
less nodes are energy constrained, it may not be in the best interest
of a node to always accept relay requests. On the other hand, if
all nodes decide not to expend energy in relaying, then network
throughput will drop dramatically. Both these extreme scenarios
(complete cooperation and complete noncooperation) are inimical
to the interests of a user. In this paper, we address the issue of user
cooperation in ad hoc networks. We assume that nodes are rational,
i.e., their actions are strictly determined by self interest, and that
each node is associated with a minimum lifetime constraint. Given
these lifetime constraints and the assumption of rational behavior,
we are able to determine the optimal share of service that each node
should receive. We define this to be the rational Pareto optimal op-
erating point. We then propose a distributed and scalable accep-
tance algorithm called Generous TIT-FOR-TAT (GTFT). The ac-
ceptance algorithm is used by the nodes to decide whether to accept
or reject a relay request. We show that GTFT results in a Nash
equilibrium and prove that the system converges to the rational
and optimal operating point.

Index Terms—Game theory, system design, wireless ad hoc net-
works.

I. INTRODUCTION

WIRELESS ad hoc networks have matured as a viable
means to provide ubiquitous untethered communication.

In order to enhance network connectivity, a source communi-
cates with far off destinations by using intermediate nodes as
relays [1]–[3]. However, the limitation of finite energy supply
raises concerns about the traditional belief that nodes in ad hoc
networks will always relay packets for each other. Consider a
user in a campus environment equipped with a laptop. As part of
his daily activity, the user may participate in different ad hoc net-
works in classrooms, the library, and coffee shops. He might ex-
pect that his battery-powered laptop will last without recharging
until the end of the day. When he participates in these different
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ad hoc networks at different locations, he will be expected to
relay traffic for other users. If he accepts all relay requests, he
might run out of energy prematurely. Therefore, to extend his
lifetime, he might decide to reject all relay requests. If every
user argues in this fashion, then the share of service that each
user receives will drop dramatically. Clearly there is a tradeoff
between an individual user’s lifetime and received service.

Cooperation among nodes in an ad hoc network has been ad-
dressed in [4]–[12]. In [4] and [8], the problem of misbehaving
nodes is addressed, while [5]–[7], [11], and [12] present mecha-
nisms to stimulate nodes to cooperate. In [9], two algorithms are
proposed, which are used by the network nodes to decide whether
to relay traffic on a per session basis. In [10], the authors study the
asymptotic behavior of a selfish node under a collaborative mon-
itoring technique and reputation mechanism. (An extensive dis-
cussion on related work can be found in Section VIII).

In this paper, we consider a finite population of nodes (e.g.,
students on a campus). Each node, depending on its type (e.g.,
laptop, PDA, cell phone), is associated with an average power
constraint. This constraint can be derived by dividing its initial
energy allocation by its lifetime expectation. For the sake of
simplicity, we assume that time is slotted and that each session
lasts for one slot. We deal with connection-oriented traffic. At
the beginning of each slot, a source, a destination and several
relays are randomly chosen out of the nodes to form an ad
hoc network (e.g., students in a coffee shop on campus); i.e., we
assume that at each slot a small subset of the population form
an ad hoc network among themselves. The source requests the
relay nodes in the route to forward its traffic to the destination. If
any of the relay nodes rejects the request, the traffic connection is
blocked. We would like to emphasize that our assumptions do not
imply a fixed topology of nodes. In each slot, we assume that
a subset of the total population form an ad hoc network.
For example, in a campus of students, in each slot a
few of the students, who are at the campus coffee shop, form an
ad hoc network.

For each node, we define the normalized acceptance rate
(NAR) as the ratio of the number of successful relay requests
generated by the node, to the number of relay requests made by
the node. This quantity is an indication of the share of service
received by the node. Then, we study the optimal tradeoff
between the lifetime and NARs of the nodes. In particular,
given the energy constraints and the lifetime expectation of the
nodes, we identify the feasible set of NARs. This provides us
with a set of Pareto optimal values, i.e., values of NAR such
that a node cannot improve its NAR without decreasing some
other node’s NAR. By assuming the nodes to be rational, i.e.,
that their actions are strictly determined by self interest, we
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are able to identify a unique set of rational and Pareto optimal
NARs for each user.

Since users are self-interested and rational, there is no guar-
antee that they will follow a particular strategy unless they are
convinced that they cannot do better by following some other
strategy. In game theoretic terms [13], we need to identify a set
of strategies which constitute a Nash equilibrium1. Ideally, we
would like the Nash Equilibrium to result in the rational and
Pareto optimal operating point. We achieve this by proposing a
distributed and scalable acceptance algorithm, called Generous
TIT-FOR-TAT (GTFT). We prove that GTFT is a Nash Equilib-
rium which converges to the rational and Pareto optimal NARs.

One of the main contributions of this paper is to apply game
theory to the problem of cooperation among nodes in an ad
hoc network for relaying traffic. However, although our model
specifically addresses the issue of traffic relaying, the level of
abstraction is such that it can be applied to other aspects of co-
operation in ad hoc networks, such as cooperative information
storage or distributed computing and processing.

The remainder of the paper is organized as follows. We de-
scribe the system scenario and introduce some notations and
definitions in Section II. In Section III, we use rationality ar-
guments to derive the rational Pareto optimal values of NAR. In
Section IV, we present the GTFT algorithm that leads the nodes
to operate at the rational optimal operating point. Section V
shows that the GTFT algorithm constitutes a Nash Equilibrium
and that the NARs of the nodes converge to the rational and
Pareto Optimal operating point. Numerical results are shown
and discussed in Section VI, while Section VII discusses some
implementation issues of the GTFT algorithm. Section VIII re-
views some related work on cooperation in ad hoc networks.
Finally, Section IX concludes the paper and points to some as-
pects that will be the subject of future research.

II. SYSTEM MODEL

We consider a finite population of nodes distributed
among classes. Let be the number of nodes in class

. All nodes in class are associated with an
energy constraint, denoted by , and an expectation of life-
time, denoted by . Based on these requirements, we contend
that nodes in class have an average power constraint of

. We assume that . The system
operates in discrete time. In each slot, any one of the nodes
can be chosen as a source with equal probability. is the
maximum number of relays that the source can use to reach its
destination. The probability that the source requires re-
lays is given by . For the sake of simplicity, in our study we
assume , i.e., there is at least one relay in each session.
This assumption can be easily relaxed by subtracting the energy
spent in direct transmissions from the total energy budget of
each node. The relays are chosen with equal probability from
the remaining nodes. We assume that each session lasts
for one slot. In this time interval, the source along with the
relays forms an ad hoc network that remains unchanged for the
duration of the slot2. We would like to reiterate at this point that

1A Nash equilibrium is a strategy profile having the property that no player
can benefit from unilaterally deviating from his strategy.

2The model can be easily extended to the case where there are multiple ses-
sions/ad hoc networks in a single slot.

we do not assume a fixed network of nodes. We assume that
there is a closed population of people carrying wireless devices.
As these people go about their daily business from one location
to the other, they form different ad hoc networks. Our model
attempts to reflect these dynamics.

The source requests the relay nodes to forward its traffic to
the destination. A relay node has the option to either accept or
refuse the request. We assume that a relay node communicates
its decision to the source by transmitting either a positive or
a negative acknowledgment. If a negative acknowledgment is
sent, the traffic session is blocked. A session is said to belong
to type , if at least one of the nodes involved belongs to class

and the class of any other node is less than or equal to 3. As
an example, consider a session with two relays. Let the source
belong to class 1, the first relay to class 2, and the second to
class 1. Then, the session is of type 2. It will become clear later
in the paper that the interaction between nodes in a session is
dominated by the node with the smallest power constraint.

A node spends energy in transmitting, receiving, and pro-
cessing traffic. We assume that energy spent in transmit mode is
the dominant source of energy consumption; thus, in this paper
we consider only energy spent in transmitting traffic4. This al-
lows us to ignore the destination node in our model. However,
energy consumption in receive mode can be easily included in
our model as an additional energy cost. No substantial changes
would be necessary if we assume, as it seems to be reasonable,
that the destination always accepts to receive traffic from the
source. The energy consumed by the nodes in transmitting a ses-
sion will depend on several factors like the channel conditions,
the file size, and the modulation scheme. Here, we assume that
the energy required to relay a session is constant and equal to 1.
While this is not a very reasonable assumption, it allows us to
capture the salient aspects of the problem. We believe that the
ideas presented in this paper can be extended to more realistic
settings.

Finally, for a generic node , we denote by the number
of relay requests made by node for a session of type till time

, and by the number of relay requests generated by node
for a session of type which have been accepted till time .

Equivalently, we denote by the number of relay requests
made to node for a session of type till time , and by
the number of relay requests made to node for a session of
type which have been accepted by node till time .

For and , we define:
, and . Observe that is

the ratio of the number of relay requests for type sessions made
by which have been accepted, to the number of requests for
type sessions made by ; thus, is an indication of the quan-
tity of service received by , with respect to type sessions. The
NAR is defined as 5. Note that the NAR
is defined for each node and session type, however, we have sup-
pressed the indices for the sake of simplicity. From the previous
definitions, it is clear that the quantity of service received by a

3The nodes involved in the session include the source and the relays; the des-
tination node is not considered.

4We ignore the energy spent by a source in requesting nodes to relay traffic
and the energy spent by a relay in communicating its decision.

5We do not define this as an acceptance probability, since we do not restrict
attention to stationary acceptance algorithms. We also assume that the limit ex-
ists
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node is determined by its values of NAR. In the following, we
will equivalently refer to NARs and user service share.

III. UTILITY, RATIONALITY, AND PARETO

OPTIMAL OPERATING POINT

In this section, we will formulate the problem in terms of the
utility functions of the nodes. We will then describe a simple
method which will identify the unique solution to the problem.
A node receives a payoff of 1 when it is a source and its relay
request is accepted. The utility function for the node is the time
average payoff received by the node. Therefore, the utility re-
ceived by a node from type sessions is given by

. If is the probability that a user is a
source in a type session, then, user ’s total utility is given by

. If the average energy expenditure per slot
for a user is given by , then the user’s objective is

subject to: (1)

This set of equations characterize the noncooperative
game. We now proceed to describe a method to obtain the
unique operating point for this game.

The set of NAR values which users receive is a function of
the acceptance algorithm executed at the relays. As mentioned
earlier, we assume that the nodes are rational, i.e., their actions
are strictly determined by self interest. Given this assumption,
we can identify a set of NAR values such that: 1) they meet
the energy constraints of the nodes; 2) they are Pareto optimal
values, i.e., values of NAR such that a node cannot improve
its NAR without decreasing some other node’s NAR; and 3)
all rational users will find the allocation fair to themselves and
hence will accept it.

In order to derive the feasible region of operation, we assume
that the nodes adopt a stationary policy, i.e., a node in class in
a session of type accepts a relay request with probability .
Given this stationary policy, we first write the constraints on the
energy consumption rate of the nodes, from which we can derive
the feasible set of s. Consider a node participating in a type

session . The average energy per slot spent by
the node as a source can be written as6

(2)

where

• is the probability that node is the source;
• is a multivariate probability function

conditioned on the fact that the session belongs to type

6The expression in (2) can be explained as follows. Given that a node is a
source, the probability that its relay request is accepted is given by the NAR of
type j sessions. Considering a path with l relays, the classes of nodes relaying
for that session must be less than j and at least one of the nodes must be of class
j. Thus, to compute the probability that, when a node is a source in a type j

session, its request is accepted, we have to sum over all possible configurations
of relays in the session and the number of possible relays weighted by q(l).

with relays; refers to the number of relays of class
participating in the session; since is conditioned

on the fact that the session is of type , nodes in that
session can only belong to class or higher; can
be estimated based on the previous history of the node
traffic connections;

• represent the probability that all the relay
nodes accept the request.

Similarly, the average energy per slot spent by the node as a
relay is given by

(3)

with being the probability that node is chosen as one of
the relays. The feasible region for the s is then defined by
the following set of inequalities:

(4)

where is the class to which node belongs. For a fea-
sible set of s, the corresponding feasible set of NARs can be
directly computed from (2). The Pareto optimal values of the

s can be derived by imposing the equality relation in (4); we
will show later in this section that they are unique.

As an example, consider a system with two nodes, say A and
B, belonging to the same class and with a power constraint .
Assume that both nodes want to transmit to an Internet access
point, and , . In this case, the feasible region for
the NARs is shown in Fig. 1. The Pareto optimal values of the
NARs are given by the line segment joining with .
In fact, while operating at any of these points, both nodes are
consuming energy at the maximum allowable rate. Therefore,
a node cannot increase its NAR without decreasing the other
node’s NAR.

We now show how rationality can be used to derive the unique
operating point from the set of feasible points. Rationality im-
plies that each user wants to maximize his benefit by expending
least amount of effort (i.e., energy). In the example in Fig. 1, it
is straightforward to see that the only Pareto optimal operating
point acceptable to both rational users is . In the case of
multiple classes, nodes belonging to different classes will have
different NARs. The notion of rationality can be extended to
this case as follows. First, consider a system with nodes, all
belonging to the same class. By rationality, each node must pos-
sess the same value of NAR; thus, it is a simple matter to derive
the maximal value of which satisfies the energy constraint as
in (4). Then, consider a system with nodes in class 1 and
nodes in class 2. Suppose ; by rationality, the lone node
in class 1 will not expend more energy than the remaining nodes
in class 2. This is because the node in class 1 will not receive
higher service share if it is more generous to users in class 2
than users in class 2 are to it. Indeed, self interest dictates that
the lone node behaves as though he belongs to class 2. Suppose
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Fig. 1. Feasible region for N = 2, K = 1, and � = 0:5.

now, that there are two nodes in class 1. When the nodes in class
1 are involved in type 2 sessions, they have no incentive to be-
have any differently than as if they were class 2 nodes. While,
when they are involved in type 1 sessions, they can utilize their
excess energy to their mutual benefit. Thus, the rationality argu-
ment leads us to the following lemma.

Lemma 1: For a set of self-interested nodes, the ra-
tional values of have the following property: ,

.
Henceforth, we shall denote by .
Given Lemma 1, the rational Pareto optimal values of the s

and, hence, the NARs can be determined by recursively solving
the energy constraints in (4) and by using (2) and (3). The fol-
lowing theorem proves that the rational Pareto optimal values of
the s are unique.

Theorem 1: Consider a system with nodes, classes,
, , , nodes in class ,
, and energy constraints . Then,

the rational Pareto optimal value of is positive and unique,
.

Proof: See the Appendix.
In addition, we can prove the following property of the ra-

tional optimal s.
Lemma 2: Consider a set of self-interested nodes, classes,

and , then the rational values of have the
following property: .

Proof: See the Appendix.
It follows that the nodes with higher levels of energy attain

higher levels of NAR than nodes with less energy.
Some examples are provided in the following.

A. Example 1

Consider classes and nodes with nodes in class , and
, , i.e., the route between any source-destination

pair consists of exactly one relay node. In this case, the session
type is the maximum of the source class and the relay class.

Consider a node in class . The average energy per slot spent by
the node as a source is as follows:

(5)
When the relay belongs to a class lower than , the session is of
type and if the relay belongs to a class higher than , the session
type is the same as the class of the relay. The same expression
holds for the average energy per slot, , spent by the node as
a relay. The rational Pareto optimal can be derived from the
following set of equations:

(6)

In particular, for , the rational and Pareto optimal is
equal to , and the rational Pareto optimal NAR is equal to

.

B. Example 2

Consider a system with two classes. For simplicity assume
that no more than two relays are ever involved . Con-
sider a node in class 2. The energy spent by this node as a source

and as a relay , are given by

(7)

The optimal can be found by solving the quadratic equation
.

Now, consider a node in class 1. The energy spent by this node
as a source and as a relay are given by

(8)

Since we know , we can obtain by solving the quadratic
equation .

Note that the method presented in these examples can be
easily extended to multiple classes and relays.

IV. GTFT ALGORITHM

In this section, we first show that the usefulness of stationary
strategies is limited to deriving the Pareto optimal operating
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point and they cannot be used to achieve the Pareto optimal op-
erating point. We will then present a distributed and scalable
acceptance algorithm which propels the nodes to operate at the
rational Pareto optimal NARs. We call this algorithm the GTFT
algorithm. In Section V, we will show that the GTFT algorithm
also constitutes a Nash Equilibrium.

In a network of self-interested nodes, each node will decide
on those actions which will provide it maximum benefit. Any
strategy that leads such users to the rational optimal NARs
should possess certain features. First, it cannot be a randomized
stationary policy. If a node in class gets a request for a type

session, then a possible course of action would be to accept
that request with probability . If all nodes were to use this
policy, then the rational optimal s described in Section III
can be used to achieve the optimal operating point. However,
a rational selfish node will exploit the naivete of other nodes
by always denying their relay requests thereby increasing its
lifetime, while keeping its NAR constant. In other words, in
our system, any stationary strategy is dominated by the always
deny behavior. Hence, stationary strategies are not sustainable,
and behavioral strategies are required in order to stimulate co-
operation. By behavioral strategies, we mean that a node bases
its decision on the past behavior of the nodes in the system. The
second feature, which we would like an acceptance algorithm
to have, is protection from exploitation. Finally, the algorithm
must be scalable.

Our problem falls in the framework of Noncooperative Game
Theory [13]. There, the canonical example is that of the Pris-
oners Dilemma. In this example, two people are accused of a
crime. The prosecution promises that, if exactly one confesses,
the confessor goes free, while the other goes to prison for ten
years. If both confess, then they both go to prison for five years.
If neither confesses, they both go to prison for just a year. Table I
presents the punishment matrix showing the years of prison that
the players get depending on the decision they make. Clearly,
the mutually beneficial strategy would be for both not to con-
fess. However, from the perspective of the first prisoner, P1, his
punishment is minimized if he confesses, irrespective of what
the other prisoner, P2, does. Since the other prisoner argues sim-
ilarly, the unique Nash Equilibrium is the confess strategy for
both prisoners. Nevertheless, if this game were played repeat-
edly (Iterated Prisoners Dilemma), it has been shown that co-
operative behavior can emerge as a Nash equilibrium. By em-
ploying behavioral strategies, a user can base his decision on
the outcomes of previous games. This allows the emergence of
cooperative equilibrium. A well known strategy to achieve this
desirable state of affairs is the GTFT strategy [14]. In the GTFT
strategy, each player mimics the action of the other player in
the previous game. Each player, however, is slightly generous
and on occasion cooperates by not confessing even if the other
player had confessed in the previous game. We have adapted the
GTFT algorithm to our problem.

We would like the nodes to determine their behavior based
on the past history so as to converge to the rational and op-
timal operating point. In our algorithm, each node maintains a
record of its past experience by using the two variables
and , , , defined in Section II.

TABLE I
PUNISHMENT MATRIX FOR THE PRISONERS DILEMMA. THE FIRST ENTRY

REFERS TO PRISONER P1’S PRISON TERM AND THE SECOND ONE TO

PRISONER P2’S PRISON TERM

Each node, therefore, maintains only information per session
type and does not maintain individual records of its experience
with every node in the network.

The decisions are always taken by the relay nodes based only
on their and values. First, consider the case with
nodes, classes, and , i.e., each session uses
only one relay. Assume that a generic node receives a relay
request for a type session. Let be a small positive number.
The strategy followed by node is as follows:

• if or , reject;
• else, accept;

where is the rational Pareto optimal acceptance probability.
We call this acceptance algorithm the GTFT algorithm. Thus,
according to GTFT, a request for a type session is refused if
either 1) , i.e., node has relayed more traffic for
type sessions than what it should, or 2) ,
i.e., the amount of traffic relayed by node in sessions of type

is greater than the amount of traffic relayed for node by
others in type sessions. Since is positive, nodes are a little
generous by agreeing to relay traffic for others even if they have
not received a reciprocal amount of help. The GTFT algorithm
has the following desirable properties: 1) it is not a stationary
strategy; 2) each node takes its action based solely on locally
gathered information; this prevents a node from being exploited;
and 3) only variables need to be stored at each node (namely,
the number of relay requests made by the node for a session of
type , the number of relay requests generated by the node for
a session of type which have been accepted, the number of
relay requests made to the node for a session of type , and the
number of relay requests made to the node for a session of type

which have been accepted by the node, with ),
independently of , and this makes GTFT scalable.

Let us now consider the multiple relay case. While for the
single relay case, GTFT attempts to equalize the amount of co-
operation a node provides with the amount of cooperation it re-
ceives, when multiple relays are used, the amount of help ren-
dered is always more than the amount of help received. This is
because a node is a relay more often than it is a source. We,
therefore, modify the GTFT algorithm as follows, and call this
version of the algorithm m-GTFT. Assume that a relay request
for a type session arrives at node belonging to class . The
acceptance algorithm becomes the following:

• if or , reject;
• else, accept

where is the ratio of the rational Pareto optimal NAR for
type session to the rational Pareto optimal . For a node
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belonging to class involved in type sessions, we define
as follows:

(9)

V. NASH EQUILIBRIUM OF THE GTFT ALGORITHM

We now prove that the GTFT algorithm constitutes a Nash
Equilibrium and show that similar arguments can be extended
to prove the convergence of the m-GTFT algorithm.

We first consider the case where all nodes belong to the same
class and routes include one relay only (i.e., , ).
For the sake of simplicity, we drop the session type index in the
following theorem.

Theorem 2: Consider a system of nodes, with all nodes
belonging to the same class and having energy constraint . As-
sume and . Then:

1. if all nodes except node are employing GTFT, then
;

2. if all nodes employ GTFT, then all
converge to .

Proof: See the Appendix.
The first part of Theorem 2 shows that if node tries to

deviate from the GTFT strategy, then it cannot achieve a ser-
vice share greater than the rational Pareto optimal value. The
second part of the theorem shows that GTFT results in the ra-
tional Pareto optimal point.

We now extend the proof to the case with multiple classes and
a single relay, i.e., , and .

Theorem 3: Consider a system of nodes with classes,
, , nodes in class , , and energy

constraints . Then:

1. if all nodes except node are employing GTFT, then
;

2. if all nodes employ GTFT, then all converge to
( ; ).

Proof: See the Appendix.
From Theorems 2 and 3, it is easy to show, by using random-

izing arguments, that m-GTFT also constitutes a Nash Equilib-
rium and converges to the rational and Pareto optimal operating
point.

Theorem 4: Consider a system with nodes, classes,
, , , nodes in class ,
, and energy constraints . Then:

1. if all nodes except node are employing m-GTFT, then
;

2. if all nodes employ m-GTFT, then all converge
to ( ; ).

Proof: See the Appendix.
Corollary 1: It follows from parts 1) and 2) of Theorem 4 that

all nodes employing m-GTFT constitutes a Nash Equilibrium.

VI. NUMERICAL RESULTS

In this section, we investigate the behavior of the GTFT and
m-GTFT algorithms by simulation.

TABLE II
RATIONAL AND PARETO OPTIMAL VALUES OF THE NARS

Fig. 2. NAR versus time when N = 25,K = 5, q(1) = 1,M = 1, and all
nodes employ GTFT. NAR values converge to the optimal operating point.

We assume a finite population of users. For the sake
of simplicity, we assume that time is slotted and that each ses-
sion lasts for one slot. For each session, the source and the relays
are randomly chosen from the nodes.

First, we focus on the single relay case. We consider a system
with five classes, and five nodes in each class . The en-
ergy constraints are given by , , ,

, and . Also, we assume and
, i.e., the route between the source and the destination

node includes exactly one relay. The rational and Pareto optimal
values of NARs are shown in Table II, where the entry corre-
sponding to the th row and th column equals the rational op-
timal NAR that we obtain when the source belongs to class and
the relay to class , i.e., the session type is equal to .
These values were derived by solving the system of linear equa-
tions as in Example 1 in Section III.

We study convergence of the proposed strategy by assuming
that all nodes employ GTFT as their acceptance algorithm. The
results show that the NAR values converge to the desired ra-
tional Pareto optimal values. The NARs associated with the dif-
ferent session types are presented in Fig. 2, as a function of time.
For the sake of simplicity, in the plot, the evolution of the NARs
is shown for just one node per each session type. We note that
all NARs converge to the values reported in Table II, i.e., to the
rational optimal values.

In Figs. 3 and 4, we show that it is critically important that
the parameter , introduced in Section IV, be positive. In other
words, nodes should always be slightly generous for the NARs
to achieve the rational optimal values. The results presented in
Fig. 3 were obtained by setting to 0.01. In this case the NAR
values converge to 0, or equivalently the quantity of service re-
ceived by all nodes goes to 0, under scoring the importance of
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Fig. 3. NAR versus time when N = 25, K = 5, q(1) = 1, M = 1, all
nodes employ GTFT, and � < 0. If nodes are not slightly generous (� > 0),
GTFT fails to reach the optimal operating point.

Fig. 4. NAR versus time whenN = 25,K = 5, q(1) = 1,M = 1, all nodes
employ GTFT, and � = 0. We set  (0) = 0:8, and �(0) to be equal to 1 in the
upper plot and equal to 0.1 in the lower plot: when � = 0, GTFT convergence
depends on the initial conditions.

being generous. Fig. 4 shows that when is equal to 0, the nodes
behavior depends on the initial value of and . In Fig. 4, the

Fig. 5. NAR versus time when N = 25,K = 5, q(1) = 1,M = 1, and one
node in class 2 and one node in class 4 are parasites while all other nodes employ
GTFT. Performance of nodes in type-2 and type-4 sessions degrade showing that
GTFT prevents parasitic behavior in rational users.

results were obtained by fixing the initial value of at 0.8 and
setting the initial value of to 1 in the upper plot, and to 0.1 in
the lower plot. The plots clearly show that the NAR’s converge
to different values as we vary the initial value of .

Next, we study the robustness of the GTFT algorithm in the
presence of parasites. We assume that a node in class 2 and a
node in class 4 are parasitic, i.e., these nodes never relay traffic.
Fig. 5 shows the NAR as a function of time, for the different
session types in the system. We see that the performance of
type 2 and type 4 sessions degrade severely while performance
for other types of sessions remain unaffected. This implies that,
since nodes are self-interested and rational, they have no moti-
vation to behave in a parasitic manner. Notice that if some node
adopts a strategy such that it relays less traffic than it should,
then its service share decreases. This is because the GTFT is a
Nash equilibrium.

We mention in passing that similar results were obtained
when the energy consumed per session was assumed to be an
i.i.d.random variable with unit mean.

We now focus our attention on the case of multiple relays and
study the system performance when all the network nodes adopt
the m-GTFT algorithm. We consider a system with two classes
and six nodes in each class. We assume , and

. The energy constraint for nodes in class 1 is equal to
0.03 and for those in class 2 is equal to 0.015. The optimal NAR
values are obtained as described in Example 2 in Section III.
Fig. 6 shows the evolution in time of the NAR for the two types
of sessions. We see that in this case too, the NARs converge to
their optimal values.

VII. DISCUSSION

In this paper, our objective is to provide a mathematical
framework for studying user cooperation in ad hoc networks
and to define behavioral strategies that lead the system to the
optimal operating point. Several implementation aspects how-
ever need to be addressed. In this section, we briefly discuss
some of these issues.
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Fig. 6. Convergence of m-GTFT for N = 12, K = 2, � = 0:03, � = 0:015, q(1) = q(2) = 0:5, and M = 2.

1) NAR calculation: So far, we have assumed that each user
possesses sufficient information about the system in order to cal-
culate the optimal values of NARs. This requires each user in the
system to be aware of the number of users in each energy class
and the energy constraint for each class. Since, by their very na-
ture, ad hoc networks should not rely on a centralized database,
weneedtodeviseadistributedmechanismtoacquireanddissemi-
nate thenecessary information toallusers.For example, users can
exchange their view of the system whenever they interact.

2) Security issues: In our model, we have made the critical
assumption that users are only rational and selfish, but are not
malicious. A malicious user, as opposed to a selfish user, is
willing to wreak havoc in the network even at the expense of his
own service share. For instance, a malicious user may always
deny relay requests. Such a user can rapidly deteriorate the per-
formance of the nodes belonging to the same class, as shown
in Fig. 5. A watchdog like mechanism, as proposed in, may be
employed to identify such users and a Pathrater-like mechanism
can be adopted to avoid relaying through such users.

Letusnowconsider rationalusers.Anotherproblemconsists in
providing a secure exchange of energy class information. This is
an important issue, and fully addressing this aspect is beyond the
scope of our present work. However, we would like to make the
following remarks. First, we believe that our approach applies to
both managed and self-organized ad hoc networks. In fact, even if
the network is not managed, it is still feasible to achieve a certain
level of authentication. One approach is to use a tamper resistant
hardware entity, as in the terminodes approach, to prevent nodes
from lying about their energy class [17]. Another “software”
approach is feasible if some of the nodes are connected to the
Internet. In that case, a scalable certificate authority as such as
the one proposed in [18] can be employed. Second, GTFT reacts
properly to misbehaving nodes that start lying about their identi-
ties. It would seem obvious that sources have incentive to pretend

they belong to higher energy classes, while relays have incentive
to pretend they belong to the lowest class. However, sources and
relays pretending that they belong to higher and lower energy
classes, respectively,will result in a non Pareto-optimaloperating
point. Therefore, nodes applying GTFT do not have any incentive
to claim they belong to a class other than their own, unless they
are malicious instead of rational.

3) Implementation of m-GTFT: We propose that the
m-GTFT algorithm can be implemented by modifying the
current AODV routing algorithm [16]. In the AODV algorithm,
when a source needs a route to a destination node, it sends a
route request (RREQ) packet to its neighbors. As the RREQ
propagates to the destination, every intermediate node can
append to the packet its class identifier, along with its address.
Once the destination receives an RREQ, it sends back a route
reply (RREP) packet over the same path followed by the RREQ
it received. Since the type of session is determined by the nodes
on the route, the destination can add the session type tag to the
RREP message. As the RREP propagates back to the source,
the intermediate relay nodes can easily implement m-GTFT.

4) Acknowledgment messages: Asstated in Section II,weas-
sumethatarelaynodenotifiesthesourcewhether itacceptsarelay
request by transmitting an acknowledgment message. We high-
light that the energy overhead of acknowledgments is minimal.
In our model, acknowledgments are not sent for every packet,
rather they are sent only per session. Furthermore, since the route
between source and destination is discovered through a reliable
protocol such as AODV, the relay nodes’ decision can be piggy-
backedon packets belonging to the routing protocol. Finally, if an
acknowledgment lossoccurs in spiteof the reliabilityprovidedby
the routing protocol and the link layer mechanisms, our algorithm
easily adapts to such an event. In fact, a lost or corrupted acknowl-
edgment is thought of as equivalent to a refusal to relay, and the
m-GTFT counters are updated accordingly.
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VIII. RELATED WORK

The problem of cooperation among nodes in an ad hoc net-
work has recently been the focus of several works [4]–[12], [19].

In [4], nodes, which agree to relay traffic but do not, are
termed as misbehaving. Clever means to identify misbehaving
users and avoid routing through these nodes are proposed. Their
approach consists of two applications: Watchdog and Pathrater.
The former runs on every node keeping track of how the other
nodes behave; the latter uses this information to calculate the
route with the highest reliability.

In [5]–[7], a secure mechanism to stimulate nodes to coop-
erate and to prevent them from overloading the network is pre-
sented. The key idea is that nodes providing a service should be
remunerated, while nodes receiving a service should be charged.
Based on this concept, an acceptance algorithm is proposed. The
acceptance algorithm is used to decide whether to accept or re-
ject a packet relay request. The acceptance algorithm at each
node attempts to balance the number of packets it has relayed
with the number of its packets that have been relayed by others.
The drawback of this scheme is that it involves per packet pro-
cessing which results in large overheads.

Payment schemes to stimulate cooperation in ad hoc networks
are presented in [11], [12]. In [11] the focus is on devising dis-
tributed schemes to set prices, while in [12], a centralized credit
clearance service (CCS) is used to manage credit. There it is
shown, via a game-theoretic analysis, that when prices are set
appropriately, selfish users have no incentive to collude or lie
to the CCS. However, the authors do not employ a class-based
energy model, as we have, and also do not compute the optimal
level of cooperation on traffic relay.

The work in [8] proposes a protocol that thwarts attacks on
traffic forwarding and routing by making denial of cooperation
unattractive. When a node detects a misbehaving neighboring
node, it sends alerting messages to its friends so as to isolate the
misbehaving node. No formal analysis of the protocol is car-
ried out; however significant limitations of this scheme are the
alerting messages overhead and the lack of redemption oppor-
tunities for “bad” nodes. In [10], the authors aim at overcoming
these problems by making every node maintain local informa-
tion of the reputation of other nodes. Node cooperation is stim-
ulated through a collaborative monitoring technique and a repu-
tation mechanism, called CORE: nodes which do not cooperate
lose their reputation making it harder for them to receive service
from other nodes. The effectiveness of CORE is analyzed using
a game-theoretic framework in [10].

In [9], two acceptance algorithmsare proposed, which are used
by the network nodes to decide whether to relay traffic on a per
session basis. The goal of these algorithms is to balance the en-
ergy consumed by a node in relaying traffic for others with energy
consumed by other nodes in relaying traffic and to find an optimal
tradeoffbetweenenergyconsumptionandsessionblockingprob-
ability. By taking decisions on a per session basis, the per-packet
processing overhead of previous schemes is eliminated.

We emphasize, however, that all of the algorithms, except for
[10], either are based on heuristics or lack a formal framework to
analyze the optimal tradeoff between node lifetime and quantity
of received service.

Finally, the work in [19] considers a set of nodes with differing
energy capabilities and analyze cooperation from a game-theo-
retic perspective. Note, however, that our work is cited in [19].

IX. CONCLUSION

Ad hoc networks hold the key to the future of wireless com-
munication, promising adaptive connectivity without the need
for expensive infrastructure. In ad hoc networks, the lack of
centralized control implies that the behavior of individual users
has a profound effect on network performance. For example,
by choosing to leave a network or refusing to honor relay re-
quests, a user can severely inhibit communication between other
users. This is a stark contrast with fixed wireless systems where
a single user has much less influence on other users. The influ-
ence of user behavior on network performance, in combination
with the fact that nodes in an ad hoc network are constrained by
their finite energy capacity, motivates the need for a rational and
efficient resource allocation scheme.

In this paper, we addressed the problem of cooperation among
energy constrained nodes in wireless ad hoc networks. We as-
sumed that users are rational and showed that as a consequence
users will not always be willing to expend their energy resources
to relay traffic generated by other users. By using elementary
game theory, we were able to show the existence of an operating
point which optimally trades off service share with lifetime. We
devised simple and scalable behavioral strategies namely, GTFT
and m-GTFT, which were shown to constitute a Nash equilib-
rium. We also proved that these algorithms lead the system to-
ward the optimal operating point.

We would like to emphasize that the aim of this work was to
provide a mathematical framework for studying user coopera-
tion in ad hoc networks, and to define strategies leading to an
optimal user behavior. Further research is required to devise an
algorithm that enables the nodes to accrue over time the system
information needed to implement the proposed strategies.

APPENDIX

We first prove Theorem 1 and Lemma 2 presented in Sec-
tion III.

Theorem 1:
Proof: Let us define as follows:

(A-1)
Consider a node in class , from (2) and (3) and by imposing
equality constraint for optimal , , we have

(A-2)

From Descartes rule of signs, since the polynomial equation
(A-2) has only one change of sign, it has exactly one positive
root. Therefore, . For , we have

(A-3)
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Thus

(A-4)

Since , once again, from Descartes rule of signs,
there is exactly one positive root for (A-4). Arguing similarly,
we see that , is positive and unique. If ,
then set to ensure that it is a feasible probability value.

Lemma 2:
Proof: This can be proved by induction. Consider class

and , from (5), we see that

(A-5)

Thus, we have . Now assume that the induction
hypothesis is true up to , , i.e.,

. Similar to (A-5), it is easy to show that .
Therefore, the induction hypothesis is true and

.
Next, we prove the theorems presented in Section V.
Theorem 2:

Proof: The first part of the theorem follows from the fact
that users excluding are employing GTFT. We know that
a node employing the GTFT scheme rejects a relay request
whenever ; thus, we have

, . Since the acceptance mechanism in GTFT is
independent of the source identity, each user receives the same
amount of help . Hence, ,

.
We now prove that and converge to the same

value. In order to do so, for the generic node we define

(A-6)

We call the node traffic flow, and write the average traffic
flow as . Henceforth, we shall assume
that this limit exists. Recall that the source is chosen randomly

from the nodes and the relay is chosen randomly from the re-
maining nodes. We can derive the following correspon-
dence between average flow and NAR

(A-7)

Due to the linear relationship between the flows and NARs
shown in (A-7), it is easy to see that the NARs converge iff the
flows converge. Moreover, since the total number of successful
requests made by all nodes must equal the total number of re-
quests relayed by all nodes, we see that flows are conserved at
any time step . We summarize this as the following Lemma.

Lemma 3: .
Proof: Consider node at time . As a first step, we prove

that converges to 0.
We track the evolution of and with the following

recursions:

(A-8)

where we have

if is a sourceand its relay request is accepted
else

if is a relay and accepts a relay request
else.

Then, we define

(A-9)

thus, the recursion on can be seen in the equation located
at the top of the following page.We can re-write the recursion
on as

(A-10)

where is a random variable taking values in . We
would like to show that the sequence converges to point

when the GTFT algorithm is used. This will
imply that converges to 0, i.e.,
converges to 0. To prove this, we use the following corollary
[15].

if is neither a source nor a relay, or is source and its request is rejected,
or is a relay and rejects a request

if is a source and its request is accepted
if is a relay and accepts a request
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Corollary 2: Consider a sequence , such that

(A-11)

Define . Then, if

a) for some ;
b) for some ;

we have with probability 1.
We need to show that converges to . By considering

and , we see that
(A-10) satisfies (A-11). It is easy to verify that condition b) of
Corollary 2 is satisfied for sufficiently large . We need to
show that condition a) holds, i.e.,

(A-12)

At time step , assume that out of the nodes are ac-
cepting relay requests, and nodes are rejecting requests.
In other words, , , and

, . Correspondingly for the flows,
for some , , and

, .
Also, recall that the probability that a node generates a relay

request in a time step is equal to . Then, the event that a
node belonging to the set of the accepting nodes makes a
request and that its request is accepted occurs with probability

. While, the node will receive a relay re-
quest, that it will accept, with probability .
Likewise, the event that a node in the set of the rejecting nodes
generates a relay request and that its request is accepted has
probability . While, the probability that it will
accept a request is equal to 0. From these considerations, it is
easy to see that

if
if .

(A-13)

We obtain

(A-14)

(A-15)

Therefore, a) is satisfied for and Corollary 2 can be
applied. We have with probability 1, i.e.,

and, hence, converge to zero for
each .

We know that for a node employing the GTFT scheme
. We also know that, since

, .
This is because, if a node uses the GTFT algorithm and

, it will always accept a relay request when
, thereby increasing . It follows

that . We can conclude that
. Since goes to zero,

.
Theorem 3:

Proof: Here, we are essentially randomizing between the
types of GTFT. If we consider all sessions of type , then all

nodes involved in sessions of type , behave as if they had the
same energy constraint . From Theorem 2, we see that if we
consider sessions of type , alone, then and will
converge. Hence, these values will converge for all the session
types eventually.

Theorem 4:
Proof: For the sake of brevity, we provide a rough sketch

of the proof. We can classify each session based on the number
of relays used. We say that the session employing relays is
an -relay session. For a fixed , we can show that and

converge, by using the same arguments as in Theorem
3 and by appropriately scaling Lemma 3. By adding these vari-
ables with the appropriate weights (i.e., , ), the
theorem is proved.
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