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Abstract

In this paper, we address the problem of increasing the effectiveness of an intrusion detection system (IDS) for a cluster of nodes in ad
hoc networks. To reduce the performance overhead of the IDS, a leader node is usually elected to handle the intrusion detection service
on behalf of the whole cluster. However, most current solutions elect a leader randomly without considering the resource level of nodes.
Such a solution will cause nodes with less remaining resources to die faster, reducing the overall lifetime of the cluster. It is also vulner-
able to selfish nodes who do not provide services to others while at the same time benefiting from such services. Our experiments show
that the presence of selfish nodes can significantly reduce the effectiveness of an IDS because less packets are inspected over time. To
increase the effectiveness of an IDS in MANET, we propose a unified framework that is able to: (1) Balance the resource consumption
among all the nodes and thus increase the overall lifetime of a cluster by electing truthfully and efficiently the most cost-efficient node
known as leader-IDS. A mechanism is designed using Vickrey, Clarke, and Groves (VCG) to achieve the desired goal. (2) Catch and
punish a misbehaving leader through checkers that monitor the behavior of the leader. A cooperative game-theoretic model is proposed
to analyze the interaction among checkers to reduce the false-positive rate. A multi-stage catch mechanism is also introduced to reduce
the performance overhead of checkers. (3) Maximize the probability of detection for an elected leader to effectively execute the detection
service. This is achieved by formulating a zero-sum non-cooperative game between the leader and intruder. We solve the game by finding
the Bayesian Nash Equilibrium where the leader’s optimal detection strategy is determined. Finally, empirical results are provided to
support our solutions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The open nature of Mobile Ad hoc Networks
(MANET) leads to new security problems that have
recently attracted significant attentions [1,2]. The coopera-
tion among nodes is critical to MANET in many perspec-
tives, including intrusion detection, as evidenced by recent
studies [1,3]. Cooperative intrusion detection systems were
proposed as a second line of defense [1,2,4,5] to detect and
thwart security threats. Current cooperative IDS solutions
are costly with respect to resource consumptions, which
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directly affect the effectiveness of an IDS over a long period
of time. Electing randomly a leader node to handle the
detection process on behalf of the whole cluster (that is, a
group of one-hop neighbor nodes who can overhear each
other) is recently proposed as a solution for reducing the
performance overhead of an IDS [4]. However, the solution
does not consider the potential selfish behavior of nodes.
Nodes may misbehave since they are not willing to con-
sume their resources for serving others and at the same
time they want to benefit from others’ services.

The second limitation of the random model [4] is that it
causes normal nodes with less remaining resources to die
faster because they will be the only nodes performing the
detection service. This fact reduces the overall lifetime of
a cluster. Non-cooperative behavior (that is, selfishness) is
first studied under the cooperation enforcement discipline
where the seriousness of selfish behaviors has been revealed
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and solutions for solving the selfishness problem in routing
already exist [6–8]. On the other hand, the selfishness prob-
lem naturally exists in MANET, although the problem has
not been widely studied to our best knowledge. In particu-
lar, selfish nodes may deviate from telling the truth about
their private information, such as remaining resources, dur-
ing an election of the leader node if that would increase
their benefits. These limitations of existing solutions moti-
vate us to propose a unified model that takes into consid-
eration the selfishness issue during the election and after.
Our model is based on well studied economic solutions in
Game theory and its subfield mechanism design.

In this paper, we balance the resource consumption of
an IDS among all the nodes in a cluster by electing the
most cost-efficient node as the leader for detecting intru-
sions. We propose a unified solution that can deal with
potential selfish nodes during and after the election of
a leader and can also maximize the leader’s detection
probability. First, during the election, incentives are
given in the form of reputation to motivate nodes to
cooperate. Incentives are calculated based on the truth-
telling mechanism Vickrey, Clarke, and Groves (VCG).
Moreover, to motivate nodes to participate in every elec-
tion, a leader will analyze packets for each node in the
cluster according to its reputation value. Hence, each
node will be assigned a sampling budget out of the lea-
der’s total-budget. Second, to prevent an elected leader
from misbehaving, we design a catch-and-punish mecha-
nism to monitor the behavior of a leader with checker

nodes. To reduce the false-positive rate of checkers, a
cooperative decision game is formulated where checkers
are the players. We also introduce a multi-stage catch
mechanism for reducing the performance overhead of
checkers. Third, to maximize the probability of detection,
we model and solve a zero-sum non-cooperative game
where the leader and intruder are players. For the leader
to optimally distribute the node’s budget among all the
node’s incoming-links, we formulate a zero-sum non-
cooperative game with incomplete information about
the intruder. We solve the game by finding the Bayesian
Nash equilibrium where the optimal plan for distributing
the nodes’ sampling budget is derived.

In summary, the main contribution of the paper is an
integrated framework that can:

• Increase the overall lifetime of an IDS in MANET by
truthfully electing the most cost-efficient node to han-
dle the detection process on behalf of the whole clus-
ter. This is achieved by balancing the resource
consumption for the detection service among all the
nodes in a cluster.

• Encourage selfish nodes to truthfully reveal their cost of
analysis during a leader election. This is achieved by a
reputation system based on the truth-telling mechanism
Vickrey, Clarke, and Groves (VCG) and by binding the
reputation of a node to the amount of services the node
is entitled to.
• Encourage an elected leader to carry out its responsibil-
ity of intrusion detection. This is achieved with a decen-
tralized catch-and-punish mechanism using random
checker nodes.

• Reduce the false-positive rate of checkers in catching the
misbehaving leader. This is achieved by formulating a
cooperative decision game among the checkers and by
a multi-stage catch mechanism.

• Maximize the probability of detection by optimally dis-
tributing the node’s sampling budget among all its
incoming-links. This is achieved by modeling a zero-
sum non-cooperative game between the leader and
intruder with incomplete information about the
intruder.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 discusses a motivating
example to build intuitions about a series of issues
addressed in this paper. Section 4 describes the leader elec-
tion mechanism. The election process is illustrated through
a concrete example and justified through analysis. Section 5
presents the catch-and-punish mechanism. We illustrate
our cooperative game theoretic model with an example.
Section 6 presents a zero-sum non-cooperative game
between the intruder and defender. The formulation of
the game is given followed by its solution and an example.
Empirical results are presented in Section 7. Finally, Sec-
tion 8 draws a conclusion with a future work.

2. Related work

In this section, we review related work on intrusion
detection systems for MANET, the application of mecha-
nism design in infrastructure and ad hoc networks, and
the application of game theory to intrusion detection.

2.1. Intrusion detection systems in MANET

The difference between wired infrastructure networks
and mobile ad hoc networks [1] has motivated researchers
to study IDSs that can handle new security challenges such
as securing routing protocols. A cooperative intrusion
detection model is proposed in [5] where every node partic-
ipates in running its IDS in order to collect and identify
possible intrusions. If an anomaly is detected with a weak
evidence then a global detection process is initiated for fur-
ther investigation about the intrusion through a secure
channel. An extension of this model is proposed in [4]
where a set of intrusions can be identified with their corre-
sponding sources. Moreover, the authors addresses the
problem of run-time resource constraints of IDSs through
modeling a repeatable and random leader election frame-
work. An elected leader is responsible for detecting intru-
sions for a predefined period of time. The proposed
models, however, do not consider the selfish or malicious
behavior of nodes which could reduce the probability of
detection. Watchdog and Pathrater are proposed in [9] to
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improve the throughput in MANET in the presence of mis-
behaving nodes. Watchdog’s goal is to identify compro-
mised nodes in the network, whereas Pathrater’s goal is
to prevent routing protocols from using misbehaving
nodes.

Most existing models do not include any punishment
procedure that can enforce nodes to behave normally.
Hence, misbehaving nodes can continue operating in the
network and benefit from other normal nodes’ services.
Due to the negative impact of misbehaving nodes,
researchers have developed different solutions to cope with
such a problem. Proposed cooperation enforcement models
are based on threshold cryptography [7], micro-payments
[6] and reputation [8]. CORE [8] is a cooperative enforce-
ment mechanism based on monitoring and reputation sys-
tems. The goal of this model is to detect selfish nodes and
to enforce them to cooperate. Each node keeps track of
others’ cooperation using reputation as the cooperation
metric. CORE ensures that misbehaving nodes are pun-
ished by gradually stopping communication services and
by providing incentives, in the form of reputation, for
nodes to cooperate. Reputation is usually given based on
data monitored by local nodes and information provided
by other nodes involved in each operation. In our model,
the amount of reputation is computed based on mechanism
design to motivate nodes to truthfully reveal their private
information.

2.2. Mechanism design application

Mechanism design is a sub-field of microeconomics
and game theory [10]. It uses game theory tools to
achieve a desired goal. The main difference between game
theory and mechanism design is that the former is used
to study what could happen when independent players
act selfishly, whereas mechanism design allows us to
define the game in such a way that the outcome of the
game, known as the social choice function (SCF), will
be played by independent players according to the rules
set by the mechanism designer. Mechanism design has
been extensively used in microeconomics for modeling
solutions for various economical problems such as auc-
tions. It has been used in computer science by Nisan
and Ronen [11] for solving least cost path and task
scheduling problems using algorithmic mechanism design.
Distributed mechanism design based on VCG is first
introduced in [12] to compute the lowest cost routes
for all source-destination pairs and payments for transit
nodes on all the routes. It is a direct extension of Border
Gateway Protocol (BGP), which causes modest increases
in routing table size and convergence time.

In [12], the author compute payments, instead of the
social choice function, in a distributed manner (notice that
the computation of a social choice function actually needs
more computational efforts than computing payments). An
extension of this work is given in [13] where the authors
considered consequences that may appear after the compu-
tation phase is finished. To achieve their objectives, the
authors introduce the concept of checker nodes that mirror
what the elected node is computing through recomputing
by itself. Currently in MANET, mechanism design is
mainly used for routing purposes. In [14], the authors pres-
ent a truthful ad hoc-VCG mechanism to find the most
cost-efficient route in the presence of selfish nodes. In [6],
the authors provide an incentive compatible auction
scheme to enable packet forwarding service in MANET
using VCG. A continuous auction process runs to deter-
mine who should obtain how much of the bandwidth and
at what price. Incentives are in the form of monetary
rewards.

Leader-election in IDS is significantly different from the
above problems. Our unique contributions, which are not
present in the work of routing, include but are not limited
to: The design of payment scheme, binding payments to
services, having checkers to watch dishonest leaders. We
address selfishness in IDS leader election, which is a real
problem that has not been addressed by previous
approaches, and it’s our belief that the main contribution
of this paper does not lies in how we apply VCG, but where
we apply it.

2.3. Game theory

Game theory [15] has been successfully applied to many
disciplines including economics, political science, and com-
puter science. Game theory usually considers a multi-
player decision problem where multiple players with differ-
ent objectives can compete and interact with each other.
Game theory classifies games into two categorizes: Non-
cooperative and cooperative. Non-cooperative games are
games with two or more players that are competing with
each other. On the other hand, cooperative games are
games with multi-players cooperating with each other in
order to achieve the greatest possible total benefits. To
predict the optimal strategy used by intruders to attack a
network, the authors of [16] model a non-cooperative
game-theoretic model to analyze the interaction between
intruders and the IDS in a wired infrastructure network.
They solve the problem using a zero-sum non-cooperative
game with complete information about the intruder. In
complete information game, the type, strategy spaces,
and payoff functions of both players are known. In [17],
the authors aim at demonstrating the suitability of game
theory for development of various decision, analysis, and
control algorithms in intrusion detection. They address
some of the fundamental network security tradeoffs, and
give illustrative examples in different platforms. They pro-
pose two different schemes based on game theoretic tech-
niques and consider a generic model of distributed IDSs
equipped with a network of sensors. Bayesian Nash is used
in [18] to analyze the interaction between the intruder and
defender in static and dynamic scenarios. The authors pro-
vide a hybrid detection approach with lightweight and
heavyweight monitoring systems.
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These existing studies clearly show that game theory is a
strong candidate for providing the much-needed mathe-
matical framework for analyzing the interaction between
IDSs and intruders. To the best of our knowledge, our
work is among the first efforts on improving the perfor-
mance of intrusion detection in MANET. Our solution is
unique in many perspectives. First, we elect the most
cost-efficient nodes using mechanism design for providing
intrusion detection service where the payments are given
in the form of reputation and calculated based on VCG.
Our solution can thus motivate selfish nodes to behave nor-
mally during the election process. Second, we ensure that a
misbehaving leader will be caught and punished through a
catch-and-punish scheme. To reduce the false positive rate
of such a scheme, a cooperative game-theoretic model is
used the checker’s decision. Third, a zero-sum non-cooper-
ative game based on Bayesian Nash equilibrium is used to
model the interaction between the leader and intruder, tak-
ing into consideration that the precise location of intruders
is typically unknown. The solution of such a game helps the
leader to optimally distribute node’s sampling budget over
its incoming-links so the probability of detection will be
maximized.
3. Motivating example

In this section, we present a concrete example of intru-
sion detection in MANET in order to build intuitions
and motivate further discussions. We illustrate a series of
issues through the example, which will be addressed one
by one in the following sections. Fig. 1 illustrates two clus-
ters in a MANET. All nodes in a cluster are one-hop away
so they can overhear each other. Between the two clusters,
we are more concerned with cluster A, which has ten nodes
numbered from N1 to N10. The node N5 is a member of
both clusters. We assume the nodes N2 and N8 are selfish
in that they do not want to consume their energy for serv-
ing others. An adversary node I is outside the two clusters
and it is sending malicious packets to cluster A aiming to
disrupt its normal operations. Assuming each node in clus-
ter A has an IDS that can detect malicious packets sent by
the adversary node. However, running IDSs at all the
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Fig. 1. An example of two clusters in a MANET.
nodes in cluster A would be too expensive in terms of
energy consumption. Therefore, the nodes in cluster A

decide to repeatedly elect a leader to carry out the intrusion
detection service on behalf of the whole cluster.

First consider the random election model in [4], which
picks a random node as the leader without taking into
account their remaining resources. Therefore, all the nodes
in cluster A have the same probability of being elected.
Suppose the remaining energy of each node in cluster A

is shown in Table 1. Electing the node N5 as the leader is
apparently not desirable in this case. First, N5 has the least
remaining energy, which means it may die quickly while
carrying out the intrusion detection service as a leader.
Moreover, N5 happens to be the only node between the
two clusters, which means nodes in different clusters will
not be able to communicate with each other after N5 dies
(this may as well be the objective of the adversary).
Another issue with the random election model is that it
does not consider the presence of selfish nodes. In this case,
if the selfish nodes N2 and N8 are elected as the leader, then
the whole cluster will be subject to attacks since they would
not carry out any intrusion detection service.

In Section 4, we shall present a solution to the following
two issues, that is the unbalanced resource consumption
and the presence of selfish nodes. First, instead of electing
a leader randomly, we select the most cost-efficient node (a
node with the most remaining energy in the simple case of
Fig. 1) as the leader. Therefore, node N7 will first be elected
as the leader, and then N3 will likely be the next leader, and
so on. Under this election strategy, nodes with more
resources will carry out more responsibility, leading to a
balanced resource consumption over time. However, two
issues arise due to the presence of selfish nodes. First, a self-
ish node, such as N2 or N8, will try to avoid being elected
by declaring a fake (lower) value of remaining energy. Sec-
ond, such a selfish node will not carry out the responsibility
of detection, even if it is elected as the leader. In Section 4,
we devise a reputation system based on mechanism design
to motivate selfish nodes to reveal their true cost of analysis
(remaining energy in this case). To address the second
issue, we incorporate a catch-and-punish scheme. Ran-
domly selected checker nodes will monitor the behavior
of the leader to ensure it is carrying out its responsibility.
Selfish nodes are encouraged to work normally, because
the consequence of being caught misbehaving will be
devastating.

Two more issues arise with the introduction of checker
nodes. First, a checker node may make mistakes in identi-
fying a misbehaving checker. This is partly due to the fact
that a checker only mirrors a small portion of work done
by the leader, and such observation will be affected by
Table 1
Remaining energy of nodes in cluster A

Nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Energy 50 45 80 77 10 25 94 34 23 69
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channel interference, collision, and other uncertainty inher-
ent to a MANET. Such false positives may cause an honest
leader, such as node N5 in Fig. 1, to be excluded from the
cluster, if a leader is determined as misbehaving as soon as
a checker says so. In Section 5, we propose a solution to
reduce the false positive rate by requiring checkers to coop-
erate in order to determine a misbehaving leader. Second,
although the cooperation of a large number of checkers
will apparently improve the accuracy in catching a misbe-
having leader, this also implies significant performance
overhead of checkers. In Section 5, we address this issue
through a multi-stage catching scheme, which increases
the number of checkers dynamically upon discovering
weak evidences of a misbehaving leader.

Finally, an issue arises when considering how an elected
leader should divide the corresponding node’s sampling
budget among node’s incoming-links to increase the prob-
ability of detection. For example, in Fig. 1 suppose node
N1 is elected as the leader after a certain time. The leader
can only analyze a finite number of packets for each node
in the cluster due to its limited resources. That is, node N1

has a sampling budget for each node. Unlike wired net-
work, a MANET does not have any gateway node where
sampling can be done. Therefore, sampling will be handled
at node’s incoming-links. In Fig. 1, there are totally 8 links
to cluster A among which 2 links are for node N9. An
adversary node can inject a malicious packet using link 7
to attack node N9. It is clearly desirable for the leader node
N1 to allocate the node’s sampling budget to link 7 so the
probability of detection will be increased. However, the
fact that link 7 will carry malicious packets is not known,
and can only be estimated based on historical information.
On the other hand, the adversary node will also try its best
to avoid sending malicious packets through a link with the
most sampling budget in order to avoid detection. To
address this issue, Section 6 models a zero-sum non-coop-
erative game between the leader and adversary to derive the
optimal sampling strategy for the leader in order to
improve its probability of detection.

4. A truthful and efficient leader election mechanism

In this section, we first give our assumptions, definitions,
and notations. We present the proposed mechanism based
on standard mechanism design notations followed by an
illustrative example and the analysis of the mechanism.

4.1. Assumptions, definitions, and notations

4.1.1. Assumptions

In this paper, we model the MANET as an undirected
graph G = (N,L) where N is the set of mobile nodes and
L is the set of bidirectional links. The network is divided
into different clusters where every cluster has a set of nodes
n 2 N and a set of links l 2 L. One-hop neighbor nodes
form a cluster and nodes might belong to more than one
cluster. It is assumed that each node has an IDS and a
unique identity. Moreover, the neighbor nodes can always
overhear each other using an omnidirectional antenna. We
consider the presence of selfish nodes that are not willing to
participate in detecting network intrusions in order not to
consume resources such as battery, memory and CPU time.
We assume that every node will increase the reputation rate
of a cooperative node since reputation is used to track
whom to trust. We consider the presence of outsider
intruders who do not belong to the cluster but want to dis-
rupt the cluster’s normal operation. We do not consider the
collusion among nodes in misbehaving since nodes in an ad
hoc network usually belong to different organizations. We
assume nodes are rational in the sense that they want to
maximize the amount of services they are entitled to receive
from the leader. Therefore, nodes are motivated to partic-
ipate in the election process in every round because a
node’s reputation is bound to the amount of services it
can receive.

4.1.2. Definitions

We define selfish node as an economically rational node
whose objective is to maximize its benefits (payoffs). There-
fore, incentives must be given to nodes to motivate them in
cooperating. Incentives are modeled in terms of the reputa-
tion of node. Reputation is used to decide whom to trust
and motivate nodes to reveal truthfully their private infor-
mation about their cost of analysis. The cost function
aggregates the cost of energy used to analyze traffic, cost
of collecting traffic, current battery and computational
(CPU and memory) level. In our model, the default value
of the reputation at the cluster formation time is a fixed
value R0. A misbehaving node is punished by decreasing
its reputation and consequently withholds cluster’s services
when the reputation is less than the predefined threshold
TH.

4.1.3. Notations

Rt
ni
ðnjÞ represents the reputation calculated by node ni at

time t for node nj behavior. On the other hand, the reputa-
tion of node i is denoted by Ri. Every node has a sampling
budget based on its reputation. This is indicated by per-

centage of sampling, PSi ¼ RiPN

i¼1
Ri

. The C notation is used

to express the cost of analysis for 100 packets/sec and Eids

is used to express the energy needed to run the IDS for that
period of time. Moreover, LeaderIDSclusterA is the leader of
clusterA that will be responsible for protecting the nodes
with good reputation rate from intrusions. Finally,

clusterA
�ni

represents the nodes in clusterA except ni.

4.2. Cost of analysis function

In our cost of analysis function, we consider fairness

where a node with less resources can have the opportunity
to be elected, after a period of time, as a leader. Hence, its
reputation is increased. We consider N nodes in a cluster,
which are divided into k energy classes with different energy
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levels. Let ni be the number of nodes in class i (i = 1, . . .,k).
We assume the lifetime of nodes can be divided into time-
slots. Each node in class i is associated with the same
energy level, denoted by Ei, and an alive slot, denoted by
nTi. Based on these notations, we say each node in class i

has a power factor PFi = Ei/nTi. We introduce a set of
k � 1 thresholds P = {q1, . . .,qk�1} to categorize the classes
as follows:

CL ¼
cl1 if PF < q1

cli if qi�1 6 PF < qi; i 2 ½2; k � 1�
clk if PF P qk�1

8><
>:

The cost of analysis of each node can simply be calcu-
lated based on its energy level, but we choose to also con-
sider the expected lifetime and the present PS of a node in
calculating the cost of analysis. We believe that our idea of
calculating cost of analysis can further be extended to more
realistic settings involving computational level, cost of col-
lecting and analyzing traffic, and other relevant factors.
The following shows our cost of analysis function.

If (Ei < Eids)

Ci ¼ 1

Else

Ci ¼
PSi

PF i
¼

RiPN
i¼1

Ri

� nT i

Ei

Selfish nodes want to maximize its PS using less energy.
To achieve that, nodes need to calculate their cost effi-
ciently. According to the given function, nodes have an
infinite cost of analysis if the remaining energy is less than
the energy required to run the IDS for one time-slot,
because the remaining energy is too low to run the IDS
for the entire time-slot. Otherwise, nodes will calculate
their C according to the given function. The C value is cal-
culated through dividing the percentage of sampling by the
power factor. The cost C is proportional to the percentage
of sampling since it is inversely proportional to the power
factor. The rationale behind the function is the following.
If the nodes have enough PS, they are not willing to loss
their energy for running the IDS. On the other hand, if
PF is larger, the cost becomes smaller since nodes have
higher energy level.

Next we show the effect of our cost function over PS

through an example. We consider 20 nodes divided equally
to 4 energy classes where nodes in class 4 have more
Table 2
PS calculated using the cost function

PS (percentage of
sampling) (s)

Class4

(%)
Class3

(%)
Class2

(%)
Class1

(%)

After 200 55 20 15 10
After 600 45 24 18 13
After 1000 40 26 20 14
resources. In Table 2, we give the respective PS for nodes
of each class against time.

In Table 2, initially nodes belonging to lower energy
level have a small budget. As time goes by, the nodes
belonging to lower energy class gains more budget while
the budget of higher classes gradually decreases. This
shows that our cost function is able to balance the energy
of nodes and gives a fair budget to all the nodes even if they
have initially a very low energy level.
4.3. Our mechanism model

Here, we define our model using standard mechanism
design notation [19]. We treat our problem as a game where
mobile nodes are the players. Each node holds a private
information hi about its preferences (hi is known as the type
of player i). The type hi is drawn from each player’s avail-
able type set Hi = {Normal, Selfish}, it describes how each
player values all possible outcomes. Moreover, we define Si

as the available set of strategies for player i. In our model,
we are using direct revelation mechanism [19] in which
Hi = Si. We assume that player i has a quasilinear utility
function [10]:

uiðhi; oðhi; h�iÞÞ ¼ pi � viðhi; oðhi; h�iÞÞ ð1Þ
where,

• h�i is the type of all nodes in a cluster except i.
• vi is the valuation of player i to the output o 2 O, know-

ing that O is the set of possible outcomes. In our case, vi

is the cost of analysis Ci that will be revealed by i after
selecting its type hi.

• pi 2 R is the payment given by the mechanism to a
selected node. Payment is given in the form of
reputation.

Note that, ui is what the player usually seeks to maxi-
mize. It reflects the amount of benefits gained by player i

if he follows a specific type hi. Players might deviate from
revealing the truthful valuation of the cost of analysis if
that could lead to better payoff. Therefore, our mechanism
must be strategy-proof where truth-telling is a dominant
strategy. To play the game, every node selects a type hi

and a valuation function vi(hi, o) where the set of valuations
is the input of our mechanism. For each input vector, the
mechanism calculates its corresponding output o = o(h1,
. . .,hn) and a payment vector p = (p1, . . .,pn). Payments
are used to motivate players to behave in accordance with
the mechanism goals. Our desired goal (i.e., the most effi-
cient IDS) is expressed by the Social Choice Function
(SCF) that is the objective for our mechanism to
implement:

SCF ¼ min
X
i2n

viðhi; oðhi; h�iÞÞ ð2Þ
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To achieve the desired goal, payments are computed
using VCG mechanism where truth-telling is proved to be
dominant.

pi ¼ Ri ¼
X
j2�ni

vjðhj; oðhi; h�iÞÞ ð3Þ

where Ri is the reputation and
P

j2�ni
vjðhj; oðhi; h�iÞÞ

denotes, according to the standard notation in mechanism
design, the best price excluding ni (i.e., second best price).

4.4. Leader election mechanism

Our MANET is modeled as a set of clusters where a set
of one-hop neighbor nodes forms a cluster. To defend
against intrusions, each node has an IDS that is able to
detect intrusions targeting communication protocols.
Based on the cost of analysis C, nodes will cooperate to
elect a leader node that will handle the monitoring process.
This increases the efficiency of an IDS in a cluster. To bal-
ance the resource consumption of an IDS in a cluster, we
design an efficient and truthful cooperative intrusion detec-
tion model in the presence of selfish nodes. Our model
objective is to find the most cost-efficient node that handles
the detection process. Without loss of generality, we will
find the leader node at clusterA where nodes are asked to
reveal truthfully their cost of analysis by motivating them
through incentives. Incentives are given in the form of rep-
utations and computed based on VCG mechanism, where
truth telling is the dominant strategy. Reputations are
needed to decide whom to trust among the nodes in a clus-
ter. In our model, nodes are asked to directly reveal their
utility function to compute the SCF, which is the least cost
of analysis value. Payments are computed using VCG. The
SCF is computed in a distributed manner where all the
nodes decide about the leader node. This guarantees that
the same leader is elected by all.

4.4.1. IDS leader election

To form the MANET into clusters, we use the cluster
formation algorithm [20]. Every node is aware of its neigh-
bor nodes. Here, we describe our distributed election pro-
tocol where every node executes the following steps. Note
that step one is executed by any node to start the election
process.
(1) ni ! clusterA
�ni

: Begin-Election ðIDni ;HðIDni , Ci,TSi),T1)
(2) ni ! clusterA

�ni
: Election ðIDni ;Ci; TSiÞ

(3) If LeaderIDS „ ni;

ni fi LeaderIDS: Done-Election.
LeaderIDS fi ni: Confirm Leadership.
ni fi LeaderIDS: Deliver payment ¼ Rt

ni
ðnjÞ.

(4) Else after T2;
1 If more than one node has the same most cost-efficient of analysis, then
we assume that the node with the highest reputation is elected.
ni ! clusterA
�ni

: Confirm Leadership.
clusterA

�ni
! ni: Deliver payment ¼ Rt

nj
ðniÞ.

In the first step, node ni 2 [1,n] sends a Begin-Election

message to all nodes in clusterA. This message includes
the identity IDni of ni and the hash value H() of the identity
IDni , the cost of analyzing the traffic Ci and the time-stamp
TSi. This time stamp helps to avoid replay attacks. The
hash function is used to avoid nodes from cheating and
delivering a fake Ci as shown after. The time T1 is used
to identify the election start time. After all the nodes
exchange the Begin-Election message within time T1.

In the second step, node ni sends the Election message
which includes its identity IDi, the cost of analyzing the
traffic Ci and the time stamp TSi. Nodes that did not con-
tribute in sending the Begin-Election message will be
excluded from cluster’s services. On receiving the Election

messages from clusterA
�ni

, node ni verifies each received mes-
sage with its corresponding hash value that has been sent in
Begin-Election message. After the verification is accom-
plished, each node computes the SCF, which is the mini-
mum valuation1 of cost of analysis as in Eq. (2).

In the third step, if the leader is different from ni then
it sends a Done-Election message to inform the leader that
he has been elected. In this case, elected leader forward a
Confirm Leadership message that indicates its acceptance
of leadership. Then, ni calculates the payment (Rt

ni
ðnjÞ)

using the VCG mechanism as in Eq. (3) and sends a copy
of the payment back (i.e., ni increases its reputation table
for nj by pj where nj is the elected node). Note that a
node needs the copy of payment to calculate its reputa-
tion and compare it to the threshold TH to avoid
punishment.

In the fourth step, if the leader is ni, it sets a timer T2 then
starts verifying the origin of all the Done-Election messages.
If T2 expires without receiving all the Done-Election mes-
sages, then nodes who did not participate are excluded from
the cluster’s services. Last but not least, once the leader has
been chosen by all the nodes, all contributing nodes will be
added to the protected list. To ensure fairness, we enforce
the reelection procedure every time TELECT. If the cluster
did not change after TELECT expires, we omit the formation
step and start leader election. Moreover, we enforce the
reelection procedure either when the leader-IDS misbehave
or quit from the cluster before TELECT expires.

Finally, selfish nodes might misbehave after election,
which motivates us to select random checkers to ensure
a catch-and-punish scheme in order to motivate an
elected node to be faithful during the detection process.
Note that a random election ensures fairness. In our
model, the selected checker is assumed to be cooperative
since the benefit of the intrusion detection service dom-
inates resources consumption. This is because we assume
that the elected checkers mirror a portion of the compu-
tation done at the elected node which have a marginal
effect on resource consumption. Catched misbehaving
leader, for example nj, is punished by receiving a nega-
tive payment �Rt

ni
ðnjÞ



H. Otrok et al. / Computer Communications 31 (2008) 708–721 715
4.5. Illustrative example

We consider a cluster of 10 nodes where 20% of the
nodes are selfish (but rational) and the presence of an
outsider intruder that does not belong to the cluster
but targets it. Nodes have to cooperate to truthfully elect
the most cost-efficient node that handles the detection
responsibility. This prolongs the life of the IDS in a clus-
ter and therefore the percentage of packet analysis is
improved. Since our model is repeatable, we present
the election example at the 10th round. We assume that
the reputation at the 9th round is given in the first row
of Table 3. where N5 is the leader-IDS at this round.
The detection service is given to the nodes proportional
to their reputations. Hence, the IDS budget (100 pack-
ets/s) is distributed as in the second row of Table 3,
where the detection service is offered according to nodes’
sampling percentage.

To elect a new leader in the 10th round, every node com-
putes its corresponding cost of analysis as in the third row
of Table 3 using the equation in Section 4.2. According to
its type (selfish or normal), nodes reveal the cost of analysis
following the election protocol steps. Using Eq. (2) in Sec-
tion 4.3, node N9 has the most cost-efficient value. Nodes
calculate the payment for elected node as in Eq. (3) in Sec-
tion 4.3, which is equal to 12 U of reputation. All the nodes
increase the reputation of the elected node N9 by +12.
Nodes send a copy of their payment to elected node in
order to confirm its leadership. Using Eq. (1) in Section
4.3, the utility of N9 is 12 � 10 = 2, which represents the
benefits gained by the node. In other words, the leader is
doing the job with cost of 10 U of reputation while receiv-
ing the payment of 12 U, which is used for increasing the
detection service later on. Note that if a leader misbehaves
after election then its reputation will go down by �12.
4.6. Mechanism analysis

In this section, we show that our model satisfies the
truthfulness and cost-efficiency properties in the presence
of selfish nodes. This is done by showing that our mecha-
nism is strategy-proof where truth-telling is the dominant
strategy. Hence, the cost-efficiency property is satisfied
since truthfulness is guarantied. A strategy is dominated
by another strategy if the second strategy is at least as good
as the other one regardless of the other players’ strategy. It
is expressed as follows:
Table 3
Leader-IDS election example

Nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Reputation 12 14 10 8 13 6 9 16 1 11
Sampling 12% 14% 10% 8% 13% 6% 9% 16% 1% 11%
Cost of

analysis
12 17 20 14 16 18 16 19 10 15
pi � viðh�i ; oðh
�
i ; h

�
�iÞÞ ¼ u�i P ui ¼ pi � viðhi; oðhi; h

�
�iÞÞ

where h�i is non-selfishness and hi is selfishness. For node i’s
utility to be maximized, it has to receive payment pi. There-
fore, payment must be designed in a way to eliminate
cheating and selfishness. Here, we show that our payment
is designed according to VCG mechanism where deviating
from truth-telling will not make node i happier (here, hap-
piness means maximizing its utility function ui). We con-
sider two cases for untruthful revelation where node i

might under-declare or over-declare its vi function (i.e., cost
of analysis).

Node i under-declares its valuation function by reveal-
ing v̂i where v̂i < vi. By under-declaring this value, node i

pretends that it has a cheaper valuation function than real-
ity, which could help it to win the election and become a
leader. Since payments are designed based on Eq. (3), play-
ing by under-declaration will not help the node for two rea-
sons. Firstly, node i might win the election even if it
declares fake valuation v̂i since in reality, using truth valu-
ation vi, it has the cheapest valuation (i.e., the most cost-
efficient cost of analysis). Using this strategy would never
benefit the node since payment depends on the second best
price and never changes. Therefore, its utility remains the
same since it is computed with respect to the real valuation
vi. Secondly, if in reality node i does not have the cheapest
valuation but tries to win the election by revealing a fake
valuation v̂i. This would lead to a negative utility function
ui since the payment received is less than the real valuation
(i.e., cost of analysis). Thus, node will receive the payment
in the form of reputation but the work it does is more than
the received payment.

On the other hand, node i might over-declare its valua-
tion by revealing a fake v̂i, where v̂i > vi. Following such
strategy would never make a player happier for two rea-
sons. Firstly, if in reality node i has the cheapest valuation
then following this strategy leads the node not to be elected
and therefore it will lose the payment. If the node with this
fake v̂i has been elected then its utility remains the same
since payment would not change. Secondly, if the real val-
uation vi of node i is not the cheapest then following this
strategy would never lead to better solutions. Last but
not least, checkers are able to catch and punish misbehav-
ing elected leader by mirroring a portion of its computation
every period of time. A catched leader is punished by com-
puting the payment in negative. Finally, we can conclude
that our mechanism is truthful and guarantee the election
of the most cost-efficient node (IDS).
5. Cooperative catch and punish model

Due to un-control problems such as channel collision,
the leader-IDS could not be able to monitor and analyze
the traffic of some protected nodes for a specific period
of time. Hence, a checker that is monitoring the behavior
of the leader-IDS could report a misbehaving event and
therefore the leader-IDS is punished and a new leader is



elected. This problem motivated us to propose a coopera-
tive game theoretical model that is able to efficiently catch
and punish misbehaving leader-IDS with less false positive
rate. We propose the concept of detection-levels to be
DL = {dl1, . . .,dlk} which enables us to respond better to
misbehaving leader-IDS depending on which detection-
level it belongs to. Hence, the percentage of checkers will
vary with respect to the detection-level. Our catch and pun-
ish model is made up of k detection-levels, each level repre-
sents the severe behavior of the leader-IDS. We introduce
the set of k � 1 thresholds T to categorize the detection-lev-
els where T = {t1, . . ., tk�1}. Now, we introduce the aggre-
gate function to be:

F ðnÞ ¼
X
i2n

Ri � f ðiÞ ð4Þ

where Ri is the reputation of checker i, n is the set of
checkers and f(i) is the catch function that takes a value
between 0 and 5 according to the severe behavior of the
leader-IDS. To decentralize the catch decision, F(n) will
be calculated by all the checkers after the secure ex-
change of f(i). F(n) sums up the catch-function of each
checker i, in a cluster n, while considering the reputation
of each checker. Now, we categorize the detection-levels
as follows:

DL ¼
dl1 if F ðnÞ < t1

dli if ti�1 6 F ðnÞ < ti; i 2 ½2; k � 1�
dlk if F ðnÞP tk�1

8><
>:

ð5Þ

Categorizing the misbehavior of leader-IDS into differ-
ent levels help in catching the selfish leader-IDS with less
false positive rate and reduce the performance overhead
of the checkers. We can use statistically trained data to
assign values to thresholds T and detection-levels DL in
order to have better results with respect to catch and pun-
ish. Here, cooperative game theory is used to formally illus-
trate the problem.

5.1. Cooperative game theory

The design and analysis of our proposed model is done
using cooperative game theory [21]. The l checkers will be
modeled as a set N of l players in an N-person game with
N = {N1, . . .,Nl} [15]. We introduce a coalition in coopera-
tive game theory to be:

D � N and 8x 2 D:

In other words, we define a coalition to be a set of check-
ers, where each checker reports the behavior of elected lea-
der-IDS. Therefore, each checker in D reports a risk in the
cluster. Let d be the number of checkers in a coalition in a
cluster. We use the aggregate function over D,X
x2D

Rx � f ðxÞ

to assign the behavior of leader-IDS to its equivalent detec-
tion-level dlj.
Assigning an anticipated marginal contribution to each
player (checker) in the game with respect to a uniform dis-
tribution over the set of all permutations on the set of play-
ers will be presented by Shapley value [21]. To find the
contribution of checker Ni in coalition D, we consider all
the different permutations for the checkers, PD, in the coa-
lition. Then we calculate the difference between the func-
tion including all checkers in the permutation before
checker Ni, including Ni, and the function of all checkers
prior to Ni, excluding Ni. We define P Ni

p to be the set of
checkers before the node Ni in the permutation p 2 PD.
Then taking the average of all these differences, we get
the marginal contribution of checker Ni in coalition D. In
other words, the contribution would be the following:

/Ni
ðDÞ ¼ 1

d!

X
p2PD

F ðP Ni
p [ fNigÞ � F ðP Ni

p Þ ð6Þ

Replacing F ðP Ni
p [ fNigÞ by

P
x2P

Ni
p [fNigrx � f ðxÞ and F ðP Ni

p Þ
by
P

x2P
Ni
p

rx � f ðxÞ.
The Equation is reduced to the following:

/Ni
ðDÞ ¼ 1

d!

X
p2PD

F ðfN igÞ ð7Þ

which simply reduces to the following:

/Ni
ðDÞ ¼ F ðfNigÞ ð8Þ

Now, to calculate the marginal contribution (Shapley
value) of checker Ni, in the cluster, we should take the aver-
age of this value over all possible coalitions, which is:

/Ni
¼ 1

c

X
Ni2D;D2N

F ðfNigÞ ð9Þ

where c is the number of possible coalitions in the cluster.
Coalitions with enough power to impose a decision collec-
tively are called winning coalitions. Here, a coalition is a
winning coalition if the aggregation of their values can
change the detection-level. Therefore, the value of a coali-
tion corresponding to a level is either zero or one. It is one
in the case of a winning coalition and zero otherwise. Thus,
the effect of checker Ni on detection-level dli
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the job of detection. Note that the leader could misbehave
either due to a channel collision or due to selfish behavior.
To efficiently catch and punish the misbehavior leader-IDS
and reduce false positive, a cooperative decision is made
among the checkers in the cluster.

As an example, let us consider that we have four detec-
tion-levels DL = {dl1,dl2,dl3,dl4}. Knowing that dl1 indicates
normal behavior, dl2 and dl3 mean more checkers have to be
added to monitor the behavior of node while dl4 means a new
leader-IDS has to be elected. The threshold set T = {2,4,6},
the detection-levels DL are classified as follows: dl1 < 2,
2 6 cl2 < 4, 4 6 dl3 < 6, dl4 P 6, the reputation of nodes
R1 = 0.5, R2 = 0.8, R3 = 0.2, R4 = 0.5, R5 = 0.6, and
f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 2, f(5) = 5. Using Eq. (9),
we calculate in the following table the participation of each
checker in catching the misbehaving leader-IDS.
Checker nodes
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Fig. 2. The effect
N1
N3
Checker

of checke
N2
N4
 nodes 
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detection
N4
Clas
Clas
Clas

-level.
N5
Contribution value
 19.2
 40.96
 2.56
 12.8
 38.4
Moreover, using 1
c jD

0j, we evaluate the contribution of
each checker on each detection-level as shown in Fig. 2.

In this Figure for example, the contribution of N3, with
other checkers in the coalition, changes the detection-level
from dl3 to dl4, which means that the leader-IDS is not
behaving properly and a new leader has to be elected.
Now, we use

P
Ni2D0F ðD

0ÞP ti to find the winning coali-
tions. For example, the winning coalitions that decide the
change from detection-level dl3 to dl4, where N3 belongs
to these coalitions is the following set: {{N2,N3,N5},
{N1,N2,N3,N5}, {N2,N3,N4,N5}, {N1,N2,N3,N4,N5}}.

6. Intruder-defender game theoretical model

In this section, we play a game between the leader-IDS
and the intruder. The objective of the intruder is to inject
a malicious packet to attack node i 2 N by selecting a rout-
ing path to i. In order to detect the intrusion, the leader-
IDS samples packets on the target’s incoming-links accord-
ing to the target’s sampling-budget Bi which is equivalent
s 2
s 3
s 4
to reputation Ri. We define the traffic flowing on link e

as fe and the sampling rate as se. The expected probability

of detecting a malicious packet on link e is pe ¼ se
ltkþ1

ðhjaeÞfe

bounded by the sampling budget Bi and having the sam-
pling constraint

P
e2Ese 6 Bi. Knowing that ltkþ1

ðhjaeÞ > 0
is the belief evaluation function. It informs the leader-
IDS about the belief that link e has been used maliciously
or not at time tk by observing the occurring action ae. Here,
we assume that the belief of the IDS regarding the sender is
equivalent to the belief of the link that the sender is using
to communicate with the target node i. Therefore
ltkþ1
ðhjaeÞ is calculated by observing the occurring action

ae at time tk using the following Bayes rule:

ltkþ1
ðhjaeÞ ¼

ltk ðhÞPðaetk
jhÞP

h2H
ltk ðhÞPðaetk

jhÞ ð10Þ

Note that, P ðaetk
Þ is the probability of having action ae at

time tk given the type h.
Now, we define the strategies of the two players:
The intruder pure strategy is to select one of the victim’s

incoming-links e 2 E where E = {e1, . . .,el} is the set of all
incoming-links directed to victim i. The intruder mixed
strategy is to assign a probability for selecting each link
where the probability vector is Q ¼ ðqe1

; . . . ; qel
Þ; such thatP

e2Eqe ¼ 1. The intruder then selects a link e 2 E with
probability qe.

The leader-IDS pure strategy is to choose the sampling
rate se on link e such that

P
e2Ese 6 Bi. We introduce the

set of detection probability vector V ¼ ðpe1
; . . . ; pel

Þ; such
that

P
e2Eltkþ1

ðhjaeÞfepe 6 Bi. The strategy for the IDS is to
pick a set of detection probabilities at the links which belongs
to V.
6.1. The game definition

We model our game as zero-sum non-cooperative game
with incomplete information about the players where each
player has a private information about his/her preferences.
In our case, the leader-IDS type is known to all the players
while the sender type is selected from the type set
H = {Malicious,Nomral}. Knowing that the sender type is
a private information. Bayesian Equilibrium [22] dictates
that sender’s action depend on his/her type h.

The following is the leader-IDS utility function:

Ui ¼
X
e2E

peqe ð11Þ

where,

• pe is the expected probability of detecting a malicious
packet at link e.

• qe is the probability of selecting link e.

The leader-IDS objective is to maximize this utility func-
tion as follows:
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max
p2V

X
e2E

peqe ð12Þ

On the other hand, the sender objective is to choose his/
her type h from the type set H. If his/her h = Malicious,
then the intruder objective is to minimize the maximization
as follows:

min
q2Q

max
p2V

X
e2E

peqe ð13Þ

Using minmax theorem [22], we can find the Nash equi-
librium where the following holds:

b ¼ min
q2Q

max
p2V

X
e2E

peqe ¼ max
p2V

min
q2Q

X
e2E

peqe ð14Þ
6.2. The game solution

The game can be solved by considering the problem
from either the intruder’s or leader-IDS’s standpoint. Here,
we consider the intruder’s problem which is:

min
q2Q

max
p2V

X
e2E

peqe ð15Þ

For a fixed qe, the problem is reduced to the following:

max
p2V

X
e2E

peqe where :
X
e2E

ltkþ1
ðhjaeÞfepe 6 Bi ð16Þ

Using the dual variable algorithm [23], we take the dual
variable Y with respect to pe. Hence, Eq. (16) is reduced
to the following optimization problem:

min BiY

subject to:

ltkþ1
ðhjaeÞfeY P qe;

X
e2E

qe ¼ 1 and Y P 0 ð17Þ

To find Y, we have to find the value that makes Y satis-
fies the constraints. To achieve this, we interpret qe as the
flow on link e. Hence, the following constraint:

qe 6 ltkþ1
ðhjaeÞfeY ð18Þ

restricts the flow on link e to be ltkþ1
ðhjeÞfeY . Thus, the

constraint
P

e2Eqe ¼ 1 is interpreted as the summation of
all the flows in E is equal to 1. In other words, the con-
straint

P
e2Eqe ¼ 1 can be written as follows:

X
e2E

ltkþ1
ðhjaeÞfeY ¼ 1 ð19Þ

Then, the objective is to find the smallest value of Y that
satisfies the constraint in Eqs. (18) and (19). Thus, Y is
equal to

P
e 2 Eltkþ1

ðhjaeÞfe.
Finally, the leader-IDS strategy is to compute the belief

of each one-hop node from the protected node i using Eq.
(10). Knowing that the belief of the sender is equivalent to
the link’s belief e 2 E that has been used by the sender.
Thus, the leader-IDS can calculate the following:P

e 2 Eltkþ1
ðhjaeÞfe. Finally, the leader-IDS optimal sam-
pling strategy is to sample the incoming link e of node i

with:

si ¼
BilefeP

e2Elefe
ð20Þ

The main differences between this game and the work
done in [16] are:

• In this game, the type of the sender is either normal or
malicious and therefore the defender has incomplete
information about the type of the sender. On the other
hand, in [16] the sender type is known to the defender
which is always malicious.

• In our game, the leader-IDS calculates the belief func-
tion for each sender which help the leader-IDS to eval-
uate the link usage (i.e., either used maliciously or
normally).
6.3. Illustrative example

Let us consider a cluster of 5 nodes with their reputations
{N1 = 25, N2 = 17, N3 = 15, N4 = 23, N5 = 20} where N5 is
the leader-IDS with detection budget B = 100 packets/s. N5

is responsible to sample the incoming packets for each pro-
tected node according to the nodes’ assigned sampling bud-
get which is equivalent to nodes’ reputation. Hence, each
node sampling budget will be: {B1 = 25, B2 = 17,B3 =
15,B4 = 23,B5 = 20}. Now, we demonstrate how the game
is played between the leader-IDS N5 and an intruder where
the intruder identity is unknown. As an example, we select
node N1 as the target node where an intruder is targeting
to attack. Fig. 3, describes an attack scenario where an intru-
sion could be directed to node N1 either through node A, B or
C. At the beginning of the game, nodes A, B, and C choose
their type from the type set H = {Malicious, Normal}. Even
if the types of A, B, and C are normal, an intrusion could still
be directed to node N1 through these intermediate nodes.
Hence, the leader-IDS will use the belief function of Eq.
(10) to calculate the belief for each incoming-link e 2 E. In
our example, the incoming set of links to N1 is
E = {AN1,BN1,CN1} and leader-IDS belief for each link
for time tk+1 is flðhjaAN1

Þ ¼ 0:3; lðhjaBN1
Þ ¼ 0:5; lðhjaCN1

Þ ¼
0:2g. Knowing that the flow on link e 2 E is determined by
how much the node is willing to forward to the target node
N1 which depends on whether the node is a source or an inter-
mediate. We can compute the link’s flow using the work in
[24]. As an example, we assume that the flow on each link
e 2 E is ffAN 1

¼ 15; fBN1
¼ 18; fCN 1

¼ 17g. To defend node
N1 efficiently, the leader-IDS’s optimal strategy is to sample
the links, using Eq. (20), as follows: fAN 1 ¼ 0:3�15

16:9
;

BN 1 ¼ 0:5�18
16:9

;CN 1 ¼ 0:2�17
16:9
g. Note that, our solution will be

iterated until the budget constraint is satisfied.
7. Simulation results

We simulate our unified model in a cluster of 20 mobile
nodes in the presence of selfish nodes. Our model is divided
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into three phases: The first one is the election process with
reputation and punishment system based on VCG mecha-
nism to elect the most cost-efficient IDS. The second phase
uses checker nodes to catch and punish the misbehaving
leader node cooperatively. Here, we show that both phases
are needed to motivate selfish nodes in behaving normally.
Finally, the leader-IDS distribute his/her budget according
to nodes’ reputation. The detection is done using our
Bayesian game model.

In Fig. 4a, we present the effect of checkers on packet
analysis in the random election model [4] where the per-
centage of checkers varies from 0 to 80% step by 20. We
assume that each checker is sampling 5% of packets ana-
lyzed by leader IDS in order to ensure leader performance.
As the percentage of checkers increases the percentage of
packet analysis increases. This is because with more check-
ers we can analyze more packets and identify the selfish lea-
der-IDS more quickly and accurately. Once the selfish node
is identified, a new leader is elected. So far there is no pun-
ishment system that is able to punish misbehaving nodes.
Hence, selfish nodes can still benefit from others’ services
and affect others’ life time as shown in Fig. 4b. Therefore,
a reputation model is needed to punish misbehaving nodes.
In our model, we assume that all nodes at the formation
phase have a reputation of one.
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Fig. 4. (a) Total packet analysis. (b) T
Fig. 5a shows our reputation model for different num-
ber of elections where 10% of nodes are selfish. Our
model is able to punish selfish nodes 5 and 15 by
decreasing their reputation. We consider the value of
the punishment threshold TH to be zero. Nodes with
negative reputation are excluded from cluster’s services.
Hence our mechanism ensures that misbehaving nodes
are punished. In Fig. 5b, we compare our model with
random one to show the percentage of alive nodes and
packet analysis with respect to time. Due to the absence
of a catching mechanism in the random model, selfish
nodes are undetected. Therefore, normal nodes that han-
dle the detection process will die faster since random
model does not support any motivation strategy. On
the other hand, our model gives better results since self-
ish nodes are given incentives to cooperate. Thus, the
node with minimum cost of analysis becomes the leader.
This balances the energy level among all the nodes in the
cluster over time.

Fig. 6a describes the percentage of packet analysis for
both models. This percentage decreases for random model
since percentage of selfish nodes in the cluster increases
over time as only normal nodes are losing their energy.
The figure shows improved results due to VCG and check-
ers of our model that motivates nodes to behave normally.
In our model, nodes do not remain selfish as they care for
their reputations. Fig. 6b shows that our model balances
the energy of all nodes while in the random one several nor-
mal nodes die.

In Fig. 7a, we compare our proposed detection-level
framework with fixed cooperative model of 20 and 60%
of checkers. Our model is better than 20% checkers with
respect to false positive rate since the number of checkers
varies according to the severe behavior of leader-IDS.
On the other hand, 60% checkers perform better than
ours but consumes much more energy. Hence, our detec-
tion-level framework has a tradeoff between energy con-
sumption and false positive rate. In Fig. 7b, we compare
our model with uniform one regarding the probability of
detection. Knowing that the uniform model distributes
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the node’s budget equally over node’s incoming-links.
Our model performs better than uniform irrespective of
the budget since our model distribute the node’s budget
using our Bayesian game result. As the number of links
increases the performance of uniform model decreases
due to the equal distribution of the sampling effort.
While, our model is not affected by the increase of links
since sampling is handled taking into consideration the
link’s belief.
8. Conclusion and future work

We proposed a unified framework that is able to pro-
long the lifetime of IDS in a cluster by balancing the
resource consumptions among all the nodes. This was
achieved by truthfully electing the most cost-efficient node
(IDS) that handles the detection process. Incentives were
given in the form of reputations to motivate nodes in
revealing truthfully their costs of analysis. Reputations
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are computed using the well known VCG mechanism
where truth-telling is the dominant strategy. Our distrib-
uted mechanism was able to elect the most cost-efficient
node and to punish misbehaving nodes by withholding
cluster’s services. Moreover, our framework was able to
catch and punish misbehaving leader that would deviate
from detecting intrusions after election. A cooperative deci-
sion game theoretical model was proposed to efficiently
catch the misbehaving leader-IDS with less false-positive
rate. Additionally, a zero-sum non-cooperative game was
given to help the leader-IDS to maximize the probability
of detection. This game was played between the leader-
IDS and intruder with incomplete information about the
intruder’s identity. The solution of the game advised the
leader-IDS to his/her optimal sampling strategy. Our sim-
ulation results showed that our framework was able to elect
the most cost-efficient node, reduce the catch false-positive
rate by the checkers and maximize the probability of detec-
tion by the leader-IDS. Finally, our current catch and pun-
ish mechanism solution adopts a binary approach, which
either regards a leader as honest, or dishonest. While this
approach works in principle, it may certainly be refined
as a quantitative approach that rates the leader with
numerical values. We will investigate this possibility in
future work.
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