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Abstract—In wireless ad hoc networks, routing needs coopera-
tion of nodes. Since nodes often belong to different users, it is highly
important to provide incentives for them to cooperate. However,
most existing studies of the incentive-compatible routing problem
focus on individual nodes’ incentives, assuming that no subset of
them would collude. Clearly, this assumption is not always valid.
In this paper, we present a systematic study of collusion-resistant
routing in noncooperative wireless ad hoc networks. In particular,
we consider two standard solution concepts for collusion resistance
in game theory, namely Group Strategyproofness and Strong Nash
Equilibrium. We show that achieving Group Strategyproofness is
impossible, while achieving Strong Nash Equilibrium is possible.
More specifically, we design a scheme that is guaranteed to con-
verge to a Strong Nash Equilibrium and prove that the total pay-
ment needed is bounded. In addition, we propose a cryptographic
method that prevents profit transfer among colluding nodes, as
long as they do not fully trust each other unconditionally. This
method makes our scheme widely applicable in practice. Experi-
ments show that our solution is collusion-resistant and has good
performance.

Index Terms—Collusion, routing, wireless ad hoc networks.

I. INTRODUCTION

IRELESS ad hoc networks have been widely used to
W achieve better connectivity at places where an infra-
structure is not immediately available or cannot be directly used.
The functioning of a wireless ad hoc network depends on the
cooperation of the nodes in the network. For example, routing
packets through the most cost-efficient path needs the informa-
tion from each node about its cost for forwarding packets. In
civilian ad hoc networks, nodes often belong to different indi-
viduals and have their own interests. Consequently, nodes may
not always behave cooperatively unless incentives are provided.

The problem of incentive-compatible routing has received
much attention [10], [32]-[34], [37]. Nevertheless, most ex-
isting solutions focus on the economic incentives of each in-
dividual node, assuming that no subset of nodes would col-
lude. This assumption is not always valid in many practical
scenarios.For example, consider an ad hoc network that uses
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a VCG-based payment scheme [2] to stimulate intermediate
nodes to forward packets. Due to the property of VCG pay-
ment, an individual node cannot benefit from cheating in the
routing protocol. However, when two or more nodes collabora-
tively cheat, they can benefit from cheating. Hence, the result
may be that some colluding nodes get more utilities while the
overall system performance degrades. Therefore, it is crucial to
study how to achieve collusion resistance in incentive-compat-
ible routing.

An elegant result on collusion resistance was obtained by
Wang and Li in [33]. They showed that strategyproofness cannot
be achieved when profit can be transferred between colluding
nodes. While this result is elegant and crucial, there are fun-
damental questions about collusion resistance remaining unan-
swered. For example, in classic game theory, there are standard
solution concepts for collusion resistance, like Group Strate-
gyproofness and Strong Nash Equilibrium. Can these concepts
be achieved in the routing of wireless ad hoc networks? The ob-
jective of this paper is to present a systematic study of collusion
resistance to address such questions.

The major contributions of this paper are as follows:

* First, we show that the standard solution concept of Group

Strategyproofness cannot be achieved in ad hoc networks.
We prove this result without assuming that profit can be
transferred between colluding nodes. This result indicates
that we have to seek collusion resistance at a different level.

* Second, we show that the standard solution concept of
Strong Nash Equilibrium can be achieved in ad hoc net-
works. In fact, we design a scheme in which all Nash equi-
libria are strong Nash equilibria. Therefore, regardless of
which Nash equilibrium the system converges to, nodes
cannot benefit from collusion.

» Third, we consider the total payment to all nodes in our
scheme. We show that it has an upper bound that normally
should not be much higher than the overall cost of lowest-
cost path.

* Fourth, we study the prevention of profit transfer between
colluding nodes, assuming they do not fully trust each other
unconditionally.! In particular, we propose a method that
makes it impossible for each node to convince other nodes
about what action it has taken. Consequently, other nodes
are not willing to transfer profit to this node in fear that this
node may be cheating them.

INote that the type of collusion we consider here is different from the type of
collusion studied in cryptography, where all colluding parties are controlled by
a single adversary and thus trust each other unconditionally. In the scenarios we
consider, each colluding node is independent and actually has its own interest;
the reason it colludes with other nodes is that it wants to maximize its own utility
in this way. Therefore, in our scenarios, colluding nodes do not fully trust each
other unconditionally.

1063-6692/$26.00 © 2009 IEEE
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* Finally, we evaluate our solution using extensive experi-
ments. Simulations demonstrate that our scheme is resis-
tant to collusion. Measurements of the overheads of our
solution show that it has good efficiency.

The rest of the paper is organized as follows. Section II
presents the technical preliminaries. The impossibility of
achieving Group Strategyproofness is proved in Section III,
and the scheme to achieve Strong Nash Equilibrium is given
in Section IV. Most of Section V is dedicated to the study of
preventing profit transfer between colluding nodes; the rest is
used to cover the study of preventing collusions across com-
munication sessions. Section VI gives our evaluation results. In
Section VII, we discuss related work. We conclude the paper
in Section VIIIL.

II. TECHNICAL PRELIMINARIES

We use a graph G = (V, F) to model a wireless ad hoc net-
work, where V' is the set of nodes, and £ C V x V is the set of
edges. We assume that G is biconnected.

Relaying data packet consumes nodes’ battery power. Here,
we ignore types of power consumption other than receiving and
transmitting data packets, such as packet discarding, standby,
and all operations on control packets, as they consume much
less energy [11], [21]. For each node v; € V, there is a cost
¢; € RT for relaying a unit of data to one of its neighbors. We
allow power control in this paper. Each node’s owner can choose
the power level of his device when his device joins the network.
In our model, therefore ¢; can be different for different v;. How-
ever, since our network is static (i.e., there is no mobile node),
the cost ¢; does not change from session to session. Note that
the cost ¢; can be either the deterministic cost under the binary
link model, where a packet is always received if the transmis-
sion power is above a threshold, or the expected cost under the
more realistic model, where a packet is received with a proba-
bility [8], [32], [35]. The cost ¢; is a private information to the
node v; itself. It is also known as fype in some previous papers.

We model the routing procedure as a strategic game, which
we call the routing game. In a (unicast) routing game, suppose
that the source node is S and the destination node is D. Then,
the player set of the unicast routing game is V' — {S, D}. We
assume that there exists a secure network topology discovery
protocol (e.g., Link Layer Topology Discovery (LLTD) pro-
tocol) to enable nodes to know the topology of the network.
In this game, when queried for cost, each player node v;
chooses an action, which is a claimed cost, based on its own
cost: a; = A;(¢;). Note that a; may not be equal to ¢;, which
is v;’s real cost. We also assume that the transmissions of
claimed costs are secure, such that intermediate nodes cannot
modify others’ claimed costs. The claimed costs are delivered
as control packets. In this paper, we do not consider the power
consumed for transmissions of control packets, as mentioned
earlier. Denote by a the profile of all players’ actions (claimed
cost): a = (a;)y,ev—{s,p}- This action profile decides a path
for forwarding data from S to D. Each node v; in this path
receives a payment p;(a) from S for each unit of forwarded
data. In addition, regardless of whether node v; is in the path
or not, it can also receive a one-time payment p’(a) from S for
the entire session. (Note that we do not study when and how

payments p;(a) and p}(a) should be collected in this paper. We
adopt the assumption from [32] and [36] that there is a central
authority who collects payments from the source node and
guarantees secure distribution of payments to the forwarding
nodes. We also adopt techniques from [37] for secure packet
forwarding. This enables us to focus on the stage of routing.)
The utility of node v; is defined as the total payment node v;
receives minus its cost for forwarding data (if any). Formally,
node v;’s utility is as follows:

ui(a) = n-oi(a) - (pi(a) — ¢;) + pi(a).

In the above equation, n € N* is the number of units of data
sent from S to D; o;(a) = 1 if node v; is in the selected path
for forwarding the data; o;(a) = 0 if node v; is not. Clearly,
the nodes {v;|o;(a) = 1} should form the path from S to D.
Note that, in our game model, each session of communication
is a game. Hence, we always consider multiple communications
sessions as multiple games (except in Section V-B, where we
extend the game model).

Before reviewing the solution concepts we use in this paper,
we recall the definition of Strategyproof Equilibrium:

Definition 1: (Strategyproof Equilibrium [23], [31]) An ac-
tion profile a* is a Strategyproof Equilibrium if for all cost pro-
file ¢ = (¢i)v,ev—{s,p}. for all action profile a, for all n. € N*

wi(a;,a—;) > ui(a;, a_;).

In the above, a} = ¢;,Vv; € V.

Denote by ac the profile of actions for a subset C' of players:
ac = (ai)y,ec. Denote by C' the complement set of C: C' =
V — {S,D} — C. We have the standard solution concepts of
Group Strategyproof Equilibrium and Strong Nash Equilibrium
as follows.

Definition 2: (Group Strategyproof Equilibrium [16], [26])
An action profile a* is a Group Strategyproof Equilibrium if
for all nonempty subset C' of player nodes, for all cost profile
c = (Ci)wev_{s,p}, for all action profile a, for all n € N¥,
either for all v; € C

ui(ag, ag) = ui(ac; ag)
or there exists a player node v; € C' such that
ui(ag, ag) > ui(ac; ag).

In the above, a} = ¢;,Vv; € V.

Note that set of Group Strategyproof Equilibria is a subset of
Strategyproof Equilibria.

Definition 3: (Strong Nash Equilibrium [23]) An action pro-
file a* is a Strong Nash Equilibrium if for all nonempty subset
C of player nodes, for all cost profile ¢ = (¢;),,ev—{s,p}, for
all profile ac of actions in the subset C, for all n € N, there
exists a player node v; € C such that

ui(ag, az) > ui(ac; ag)-

In reality, any practical solution to the routing game should
satisfy additional requirements. For example, we should have
social efficiency, which means that the total cost of the selected
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path must be minimum. Also, each player node should have in-
dividual rationality, which means that its utility should be al-
ways greater than or equal to 0, since otherwise the player node
would simply choose to remain out of the game. We combine
these two requirements to define the admissibility of a solution.

Definition 4: (Admissibility) In a unicast routing game, sup-
pose that a* is a Group Strategyproof Equilibrium or a Strong
Nash Equilibrium. We say a* is admissible if the following two
requirements are met for all cost profile ¢ = (c¢;)y,ev —{s,D}:

 The nodes {v;|o;(a*) = 1} form the lowest-cost path from

StoD.

* Forall n € N*, for all player node v;, u;(a*) > 0.

Using the above definitions, now we can formally state the
main questions addressed in Sections III and IV. As the system
designer, we have the freedom of choosing the functions p;(),
p%(), and o;()—the choice we make is called a scheme. Is there
a way to design a scheme such that the system converges to
an admissible Group Strategyproof Equilibrium or an admis-
sible Strong Nash Equilibrium? (Here, convergence means the
process in which all the nodes in the ad hoc network gradually
change their behavior until they reach an equilibrium state.) Our
answer is that the former is impossible, while the latter can be
achieygd. IMPOSSIBILITY OF GROUP STRATEGYPROOFNESS

In this section, we show that Group Strategyproofness cannot
be achieved since it is contradictory to our requirement of ad-
missibility.

Theorem 1: In any unicast routing game, if there is only one
lowest-cost path from S to D, then there does not exist any
admissible Group Strategyproof Equilibrium.

Proof: Clearly, any Group Strategyproof Equilibrium is
also a Strategyproof Equilibrium. Therefore, for an arbitrary
unicast routing game, we show that any Strategyproof Equilib-
rium a* is not Group Strategyproof if it is admissible.

The basic idea of our proof is that we can carefully construct
a colluding group of nodes and their actions, such that some
colluding nodes can benefit from collusion without decreasing
the other colluding nodes’ utility. Logically, this suffices for the
proof of nonexistence.

Denote by LCP(S, D, c) the lowest-cost path from node S to
node D when the cost profile is c. We construct a player subset
C = {ig} ULCP(S, D, ¢), where v;, is anode in LCP(S, D, ¢)
and LCP(S, D, ¢) is the set of nodes out of LCP(SS, D, ¢). For
all v; € C, we define

c; = ¢ + pi,(ag, o) + piy (ag, a) + 1. (1)

Before we prove our theorem, we first prove the following
lemma.
Lemma 2: When c is the cost profile, for all v; € C

Ui(a*c» a*a) = Ji(aC7 a%)

where
ac = (a}(c}))vec- 2

Proof: Since a* is admissible, when c is the cost profile,
clearly we have

oi(ac,az) =1 v; € LCP(S, D, c).
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On the other hand, considering a different scenario in which
(ces ¢) is the cost profile, from (2) we can easily get that

oi(ac,a%) =14 v; € LCP(S, D, (c¢s cp))-
Furthermore, from (1) we know that
LCP(S, D,c) = LCP(S, D, (cg, cg))-
Combining the above three equations, we have
oi(ag, ax) = oi(ac, a%s).

|

Now, we come back to the proof of our theorem. Consider

each v; € C, i # ig. Clearly, o;(ag, a*E) = 0. By Lemma 2,
this implies that

silac, %) = 0. ®

Since a* is Strategyproof, considering the scenario in which
(ces ¢) is the cost profile, we get?
ui(ac, az) < ui(ac, ag).

Since 0i(ag, a%;) = oi(ac,az) = 0

pilag, a%) < pilac, a%). 4)
When we put (3) and (4) together, we obtain that when c is the
cost profile

u;(ag, a%) < u(ac, a%). 5)

Finally, we consider v;,. From (1), we have

npi, (ag, a%) + pj, (ag, aZ) < ncj . (©6)

From (2), since a* is admissible, considering the scenario in
which (c¢g, ¢z) is the cost profile, we have

ncly < npiy(ac, a%) + ol (ac, a). ™)

We put (6) and (7) together and obtain that

* *

n(pio (ag, CLC) - Cio) + p;o (acs ac)
< n(piy(ac, a%) = ¢iy) + Pl (ac,a%).  (8)

Since 0y, (ag, a%;) = 1, using (8) and Lemma 2, we get that
when c is the cost profile

uiy (ac, a55) < uiy(ac, azs). )

Equations (5) and (9) together imply that a* is not Group Strat-
egyproof. |

2In fact, if we consider instead the scenario in which ¢ is the cost profile, we
can get the inequality in the other direction: p;(a¢,, a%) > pi(ac, aZ). Hence,
actually we have p;(a¢.. a%) = pj(ac, aX). However, to prove Theorem 1, it
suffices to have (4).
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IV. THE EXISTENCE OF A STRONG NASH EQUILIBRIUM
AND How TO CONVERGE TO ONE

In Section III, we have shown that in general we cannot guar-
antee the existence of admissible Group Strategyproof Equi-
librium in the routing game, and thus clearly we cannot hope
the system to converge to an admissible Group Strategyproof
Equilibrium. Fortunately, we can design a scheme such that the
system converges to an admissible Strong Nash Equilibrium.
Note that the solution concept of Strong Nash Equilibrium is
different from that of Group Strategyproof Equilibrium.

A. Scheme

The key idea of our design is discretization of costs. In prac-
tice, the cost ¢; of each node has a finite precision. Therefore,
without loss of generality, we assume that there is a very small
real number € € R such that for all player node v;, c; is a mul-
tiple of €. Naturally, whenever a node claims its cost, we require
that the claimed cost is also a multiple of e. (Nevertheless, in
our scheme, the payment to each node is not necessarily a mul-
tiple of e—this is a very important feature of our scheme.) Based
on this idea, we design a scheme in which each node makes a
claim about its cost for forwarding a unit of data. If a node is
in the lowest-cost path, our scheme gives it incentives to max-
imize its claimed cost (to the extent that it does not fall out of
the lowest-cost path); if a node is out of the lowest-cost path,
our scheme gives it incentives to minimize its claimed cost (to
the extent that it does not fall into the lowest-cost path). Conse-
quently, whenever the system converges to a Nash Equilibrium,
each node in the lowest-cost path has a claimed cost equal to
or slightly higher than its real cost, and each node out of the
lowest-cost path has a claimed cost equal to or slightly lower
than its real cost. Interestingly, we can show that such a Nash
Equilibrium is actually a Strong Nash Equilibrium.

Specifically, in our scheme, the payment p; for each unit of
data is equal to the claimed cost of node v;. Therefore, each node
in the lowest-cost path has incentives to increase its claimed
cost, as long as it remains in the lowest-cost path after the in-
crease. In contrast, the one-time payment p} decreases in the
claimed cost of node v;. Therefore, each node out of the lowest-
cost path has incentives to decrease its claimed cost, as long
as it remains out of the lowest-cost path after the decrease. Of
course, nodes in the lowest-cost path also receive one-time pay-
ments. We have to make sure that changes of one-time payments
do not influence these nodes. To achieve this goal, we make all
one-time payments smaller than e. Hence, for all node v; in the
lowest-cost path, the total payment always increases whenever
p; increases (because the increase of p; is at least € and the de-
crease of p} is less than €).

We emphasize that these are only some intuitive thoughts be-
hind our design, which are not completely precise. For precise
analysis, see the theorems, lemmas, and proofs we present.

Fig. 1 summarizes the details of our scheme. Given this de-
tailed description of our scheme, now we can present the formal
analysis of our scheme. We have three major results: 1) there
exists a Nash equilibrium; 2) all Nash equilibria are admissible

Suppose S wants to some data to D.

« [Initiation] S initiates with broadcasting a query
for forwarding cost with TTL ¢ (¢ is a constant
system parameter). On receiving the query, each
node replies to S with a claimed cost a; =
k - €,k € N; and rebroadcasts the query if the
deducted #(t =t — 1) is positive.

« [Calculation] S computes the lowest(-claimed)-
cost path (LCP) to D using Dijkstra’s algorithm .
If there is a tie, S breaks the tie according to
the lexicographical order. For each node v; in the
LCP, S computes a one-time payment:

/
pi(a) = ’
1+ maxy,eLcP(s,D, (0} ar7)) %

€

Here, MaXy, € LOP(S,D, (] 0777)) a; is the largest

cost v; can claim, when each other node v; still

claims a;, such that v; remains in the LCP. For

each node v; not in the LCP, S computes another

one-time payment:

€

- 1+ a; ’

o [Transmission] S starts data transmission and
counts the number of packet sent as n.

o [Compensation] S ends the transmission and
pays each node v; with:

P =n-04(a) - pi(a) + pi(a),

here p;(a) = a;.

pi(a)

%Note that it is also possible to do the calculation at D or any
trusted node in the impl ion. For convenience of presentation,

we let S collect claimed costs and do the calculation in this paper.

Fig. 1. Scheme for achieving Strong Nash Equilibrium.

Strong Nash Equilibria; 3) for all Nash equilibria, there is an
upper bound on the total payment to all nodes.

We show the existence of Nash equilibrium, when our scheme
is used, by constructing a Nash equilibrium manually (Theorem
3). Since there may be a large number of Nash equilibria the
system can converge to, it is crucial to prove that any achieved
Nash equilibrium is admissible and strong. For the admissibility,
we use Lemma 4 to show that any achieved Nash equilibrium is
socially efficient, and we use Lemma 5 to show that the pay-
ments can cover the forwarding costs of intermediate nodes.
Next, we prove by contradiction that any achieved Nash equilib-
rium is strong (Theorem 6). Finally, we study the upper bound
of payment using a carefully designed alternative graph.

B. Existence of Nash Equilibrium

Theorem 3: If the scheme in Fig. 1 is used, then there exists
a Nash equilibrium.

Proof: We construct an action profile a* as follows. Ini-
tially, we set aj = ¢; for each v;. Then, for each player node
v; & LCP(S, D, c),if a¥ > 0and LCP(S, D, (a} —¢, a’ET})) =
LCP(S,D,a*), we decrease a} by e; otherwise, keep the
value of af. For each player node v; € LCP(S,D,c), if
LCP(S, D, (af + ¢, a*T})) = LCP(S, D,a*), we increase a
by ¢; otherwise, keep t{he value of a;.

We repeat the above process until it does not make any change
to any a;. When the iteration stops, we get the action profile a*
we want.
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We note that the above process will stop in a finite number of
steps. Next, we show that a* is a Nash equilibrium.
For each node wv;, we need to show that, for all a;,
u;(al, a*T) > ui(ag, a*T). We distinguish two cases.
Case A: v; ¢ LCP(S,D,c) = LCP(S, D, a*). Then

* % _ €
ui(ai7am) - 1+a;!/<'

If a; > af, clearly v; ¢ LCP(S, D, (a;, a’{“T})) and
. € €
il 0y) = T < Ty at
If a; < a] (which is equivalent to a; < a] — ¢), by the above
stopping criterion, we know that v; € LCP(S, D, (a;, a?T}))
Thus

=u;(a},a

o

u;(a;,a% G })
=n-o;(a;, am) ~(pi(ai, am) -

€

¢i) + pi(ai, GL—»})

=n-(a; —¢)+

1 + maxy, eLcp(s,D, (a!

<n-(a; —¢)+e
<n-(af —e—ci)+e

< —ne+te
<0 < u(a;, a{ })
Case B: v; € LCP(S, D,c) = LCP(S, D,a*). Then
u;(al, aﬁ) n(al —¢;) + ¢

If a; < a} (which is, again, equivalent to a; < a — e), clearly
v; € LCP(S,D(ai,a%)) and

—mn-g:la: ) a:. aX—
=n Uz(au {}) (pv(aL {}) C'L)—i—pz(ama’{i})

€

/
1+ maX1)1€LCP(S,D,(a§,a%)) a;

If a; > a}, by the stopping criterion, we know that

v; € LCP(S, D, (a;, G?T}))' Thus

Ui(au {}) p; (aL aﬁ)
- €
- 1+ a;

€

1 + max,, cLop(s,

<w(al, aﬁ)

In the above, the first inequality follows from the fact that v; ¢
LCP(S, D, (a;, a*{f—,})) and thus

/
D,(a’,ax_)) Q;
(a},02)) G

!

a; > max i
v; ELCP(S,D,(a/ 7a*{'—,}))
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C. Admissible Strong Nash Equilibrium

Before we go to our proof that all Nash equilibria are admis-
sible Strong Nash Equilibria, we need to establish two technical
lemmas.

Lemma 4: If the above scheme is used, then for each Nash
equilibrium o*, LCP(S, D,¢) = LCP(S, D, a*). That is, the
lowest-cost path is always selected in all Nash equilibria.

Proof: We prove this lemma by contradiction. Suppose that
there exists a Nash equilibrium a* such that LCP(S, D, ¢) #
LCP(S, D, a*). We distinguish two cases.

Case A: There exists v; such that v; € LCP(S, D, ¢), v; &
LCP(S,D,a*), al > c¢;. Then, we consider v;’s utility when it
claims the real cost ¢; and all other nodes still remain with their
equilibrium actions. If v; € LCP(S, D, (¢;, a?z—,}))

ui(ci,a*=) = n(c; — ¢;) + ¢ ;
@ 1+ max, eLp(s.D () ) @
€ * *
> Toar il o)

In the above, the inequality is due to fact that v; ¢
LCP(S/D/(];"‘) and thus a;-* > maXviech(Syl)’(aiyak )) CLZ
This is contradictory to the fact that ¢* is a Nash equihi)rium.
If v; ¢ LCP(S, D, (¢;,a%~)), we have

{i}
O  — wilat, i
ui(ci,am) = 1ra > T4ar —uz(awa{i}).

Again, this is contradictory to the fact that a* is a Nash equilib-
rium.

Case B: For all v; such that v; € LCP(S,D,c),
v; & LCP(S,D,a*), we have af < ¢;. Assume that when
LCP(S,D,c) and LCP(S,D,a*) have the same claimed
cost, the tie-breaking rule chooses LCP(S,D,a*) over
LCP(S, D, ¢). (If the tie-breaking rule chooses LCP(S, D, c)
over LCP(S, D, a*), we have a similar proof, which we skip to
save space.) Then, we know that

* *
a; a;

v; ELCP(S,D,a*) v; ELCP(S,D,c)

_ *
= a;

v; ELCP(S,D,c)Av; gLCP(S,D,a*)

+ Z a;

v; €ELCP(S,D,c)Av; ELCP(S,D,a*)

< Z ¢

v; ELCP(S,D,c)Av; gLCP(S,D,a*)

+ Z a;

v; €ELCP(S,D,c)Av; ELCP(S,D,a*)

< Z ¢

v; @LCP(S,D,c)Av; ELCP(S,D,a*)

+ Z a;.

v; €ELCP(S,D,c)Av; ELCP(S,D,a*)

IN

Using the above inequality, we can show that there exists v; such
that v; ¢ LCP(S,D,¢), v; € LCP(S,D,a*), af <c¢; (see
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below). Therefore

€

* % *
wi(al,ai=) =n(a; —¢;) + ;
{Z} 1 + 111axv1€ch(57D7(a§,a%)) CL,L-

<n(a] —¢;)+e
< —ne+e

<0

<wi(ei, ag)

which is contradictory to that a* is a Nash equilibrium.
Finally, we give a proof that there exists v; such that v; &
LCP(S,D,c),v; € LCP(S, D,a*), a} < ¢;. Suppose that this
is not true. Then, using (10), we get that, for all v; such that
v; & LCP(S, D, ¢) and v; € LCP(S, D, a*), af = ¢;. Since

*
2. !

v; €LCP(S,D,c)Av; ELCP(S,D,a*)

< j{: a;

v; ELCP(S,D,c)Av; ¢LCP(S,D,a*)

(10)

we get that

E Ci
v; gLCP(S,D,¢)Av; ELCP(S,D,a*)
< > a;
v; ELCP(S,D,c)Av; gLCP(S,D,a*)
< g Ci
v; ELCP(S,D,c)Av; €LCP(S,D,a*)

which means that the real cost of LCP(S, D, a*) is not more
than that of LCP(S, D, ¢). This is impossible because even
when their costs are equal, the tie-breaking rule should not
choose LCP(S, D, c) as the lowest-cost path. ]

Lemma 5: If the abovementioned scheme is used, then
for all Nash equilibrium a*, we have that a} > ¢; & v; €
LCP(S, D, c) and that a < ¢; & v; € LCP(S, D, ¢).

Proof: We only need to show that v; € LCP(S, D,¢) =
a¥ > ¢; and that v; € LCP(S,D,¢) = af < ¢;, which are
equivalent to this lemma.

First, we prove v; € LCP(S,D,¢) = a} > ¢; by contra-
diction. Suppose that there exists v; € LCP(S, D, ¢), such that
a; < ¢;.Since LCP(S, D, ¢) = LCP(S, D, a*) (by Lemma4),
v;’s equilibrium utility is
€

£k
N0

u;(a ) =n(a; —¢)+
7 7 2 1+ maXviELCP(S,D,(a;,a’{‘__})) 0,;

€

< —ne+ y
1 + max,, ELCP(S,D (a} 02 1)) %

< —ne+e€

<0

which indicates that v; can increase its utility by declaring a cost
that brings itself out of the LCP. This is contradictory to the fact
that a* is a Nash equilibrium.

Next, we prove v; € LCP(S,D,c) = af < ¢, also by

contradiction. Suppose that there exists v; ¢ LCP(S, D, c),

such that a¥ > ¢;. Since LCP(S, D, ¢) = LCP(S, D, a*) (by
Lemma 4), v; has an equilibrium utility
€

Ui(ai,am) = m

We claim that v; can always increase its utility by declaring its
real cost ¢;: If v; € LCP(S, D, (¢;, af{‘l—,})), then

€

wi(ci,ai=)) =n(e; — ¢) +
( {Z})) ( ) 1 + max,, €LOP(S,D\(a,02)) a

“1+al
=u;(a;, ajET}).
If v; ¢ LCP(S,D,(ci,aL—,})), then
* _ € € — wu:(a* af—
wlenom) = 154 > 13 ar wilaf, agy)-
This completes the proof. [ |

Now, we are ready to show that all Nash equilibria are admis-
sible Strong Nash Equilibria.

Theorem 6: If the above scheme is used, then all Nash equi-
libria are admissible Strong Nash Equilibria.

Proof: (Sketch) It is clear from Lemmas 4 and 5 that all
Nash equilibria are admissible. Then, we only need to prove that
all Nash equilibria are strong. We prove it by contradiction.

Suppose that there exists a Nash equilibrium o* that is not
strong. Then, there exists C' C V and an action profile ac of C'
such that every node in C' can increase its utility when they use
ac.

First, we show by contradiction that for all node v;, if
v; € LOP(S, D, (ag, a%)), then v; € LCP(S, D, (ac,ag)).
Suppose that there exists v;, v; € LCP(S,D,(ag,aX)),
v; € LCP(S, D, (ac,aZ)). Assume that the tie-breaking rule
prefers LCP(S, D, (ag;, a%)) to LCP(S, D, (ac,aZ)) when
their claimed costs are equal. (We have a similar proof when the

tie-breaking rule prefers LCP(S, D, (ai, a%)).) Then, we have

> > o

UiGLCP(S,D,(aC,a*F)),wGC v; GLCP(S,D,(aC,a%)),UigC

< > a;

v; GLCP(S,D,(aC,aF)),UiGC

+ Z a;

v; GLCP(S,D,(aC,aF)),vigc

= Z @i

viGLCP(S,D,(ac,a%)),vi gLCP(S,D,(a*C,a*F)),viGC

+ > a;

v; ELCP(S,D,(GC,a%)),vigLCP(S,D,(a*C,a%)),vi gC

< Z a;

v1€LCP(S,D,(a’E,a%)),u, QLCP(S,D,(acy,a%)),'U1€C

+ Z a;.

v ELCP(S, D, (ay, a2)),v: LCP(S, D, (ac,a)),vi €C

a; +
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Since

> a;

viGLCP(S,D,(aC,a%)),vi€LCP(S,D,(a*C,a*F))

> > a}

v GLCP(S,D,(aZ,a%)),vi€LCP(S,D,(an,a%))

we have

>

v; GLCP(S,D,(aC,a”;_)),v7 QLCP(S,D,(a},a%)),m eC
< >
v; ELCP(S,D,(a}, ,a%)),viQLCP(S,D,(aC,a%)),vi eC

(1)

We can easily show that, for all v; € LCP(S,D,(ac,a%)),
v; ¢ LCP(S, D, (ag,a%)), vi € C, a; — aj > 0: Otherwise,
a; — a; < 0, which 1mphes that

€

—ci)+

1+ maxy,eLop(s,D,(a)ac— iy .a2) %
<n(a; —¢;) +e
<n(af —e—c¢;)+e
< —ne+e
<0
<wi(ag, az).
This is contradictory to our assumption. Similarly, we
can easily show that, for all v; ¢ LCP(S D, (ac,a%)),
v; € LCP(S, D, (ag, a%)), vi € C,ai — a7 <0.

Combining the above two results with (1 1) we get a contra-
diction. Therefore, we must have v; € LCP(S, D, (ag;, a%))
= v; € LCP(S, D, (ac, af,)). This actually means

LCP(S, D, (a¢, a)) = LCP(S, D, (ac, ag)). (12)

Using (12), from Vv, € C, u;(ag, a*a) < ui(ac, a%) we can

easily get that

v, € CANv; € LCP(SD
v; € C ANv; € LCP(S, D

az)) & a; <a;
ax)) & a; > a;.

,(ag,
7(0/27
From the above result, it is not hard to get that
LCP(S, D, (ag, a%)) = LCP(S,D,(a], aﬁ)) Therefore,
ifv; € LCP(S, D, ( {}))

u;(al, aﬁ) n(a; —¢;) + 1+ max,,

~

* ) 4

€

<n(a; —¢)+

1+ InaXviGLCP(S,D,(a;,aE

= ui(ai7 am);
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which is contradictory to that ¢* is a Nash equilibrium. If v; ¢
LCP(S, D, (af %))

€ €

wleh o) = Trar < Tvm

7 {1} = ui(aham)

which is also contradictory to that ¢* is a Nash equilibrium. H

D. Upper Bound on Payment

So far, we have shown that any Nash equilibrium is resistant
to collusion when our scheme is used. A natural question is how
much is needed to pay the nodes in these equilibria. Now, we
show that the total payment needed in any Nash equilibrium
actually has an upper bound, which is based on the alternative
graph we define below.

Definition 5: In the network G, for source node S and desti-
nation D, we define the (S, D)-alternative graph as a directed
graph G’ = (V, E’), where

E" ={(vi,v))|(vi,v;) € E;
v;¢ LCP(S, D, ¢) orv; ¢ LCP(S,D,c)}
U{(vi, v;)[(vi, vj) € LCP(S, D, c)

and v; is closer to S than v; in G'}.

Note that an alternative graph is always a subgraph of G (if we
view G as a directed graph such that (v;,v;) € E & (vj,v;) €
E), so every path in the alternative graph is also a path in G.
Furthermore, since the alternative graph has kept the vast ma-
jority of edges in GG, we can expect that a lot of paths in G still
remain in the alternative graph.

Definition 6: An (S, D)-alternative path is a path from S to
D in the (S, D)-alternative graph such that for any node v; in
this path, if v; € LCP(S, D, ¢), then either the node preceding
v; in this path is also in LCP(SS, D, ¢), or the node following v;
in this path is also in LCP(S, D, ¢).

The following theorem guarantees that alternative paths exist.

Theorem 7: For every pair of (S,D), there exists an
(S, D)-alternative path.

Proof: We construct an (S, D)-alternative path as fol-
lows. Without loss of generality, suppose LCP(S,D,c) =
Swvivs ... v, D, where nodes are sorted according to their order
in the path from S to D. Since G is biconnected, there must
be a path P; from S to D that does not go through v;. Let
v;, be the first node in P; that is in LCP(S, D,¢), and P|
be the part of P, from S to v;, (including v;,). Then, we can
construct Pj, P5, ..., P} in the following way: Suppose we
already have P| through P, where P/ ends at node v;; . Since
G is biconnected, there is a path P;;; from v;;,_; to D that
does not go through v;;. Let v;,,, be the first node on P;;
that is in {ve|¢ > i;}. Let vy, be the last node before v; .,
on Pjiq that is in {v¢|¢ < u;}. Therefore, P, starts from
v;;, going toward v;  along LCP(S, D, ¢), and then follows
Pj41 to reach v;_, . The last one of this sequence, P}, must
end at D. Therefore, P{ P ... P/ is the (S, D)-alternative path
we have constructed. It is not hard to verify that it is indeed an
(S, D)-alternative path. [ |
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Definition 7: The lowest-cost alternative path for (S, D), de-
noted by LCAP(S, D, ¢), is the (S, D)-alternative path with the
lowest cost.

Normally, the lowest-cost alternative path should not have a
much higher cost than the lowest-cost path in G. Below, we
show that it is an upper bound on the total payment.

Theorem 8: If our scheme is used, in any Nash equilibrium
a*, the total payment is

Y (pia®) + pi(a")) <

v, €V

ci+|V|-e

>

v; ELCAP(S,D,c)

Proof: Again, without loss of generality, suppose
LCP(S, D,¢) = Svivs ... veD. By the definition of (S, D)-al-
ternative path, we can write LCAP(S, D, ¢) as

S P

Pg Vi, Vig—1 .- - ’Uil2

Vi Uiy—1.-- ’UZ'I1

P, D

where all nodes in all P; are out of LCP(S, D, ¢), and for every

J»ij > i’;. Hence, (letting vy = Sandv;, = D)

v; ELCAP(S,D,c) j=1v;€P, 71=14= 1
J i;—1
Z 2 aiz), 2
j=1lv,€P; J=li=i_ +1
J =1 L
2D D =)= 3 pila)
j=li=ij_y =1 v; ELCP(S,D,c)
Consequently, it is easy to see
S (pia”) +#(a”))
v; €V
= Y pla+ Y pila)

v; ELCP(S,D,a*)

+ 3 pi(a”))

v; €V

< 2

v; ELCAP(S,D,c)

v; ¢LCP(S,D,a*)

C,—|—|V|€

V. PREVENTING PROFIT TRANSFER AND
MULTISESSION COLLUSION

As we have mentioned, the standard solution concepts of
Group Strategyproofness and Strong Nash Equilibrium are ap-
plicable if profit cannot be transferred between colluding nodes.
In many practical scenarios, the assumption of no profit transfer
is not immediately valid. To make our results applicable in those
scenarios, we propose a method to prevent colluding nodes from
transferring profit to each other, as long as they do not fully trust
each other unconditionally. (Note that in civilian applications,

nodes typically do not trust each other unconditionally, unless
they belong to the same user.)

The main idea of our method is that we can make it impossible
for colluding nodes to convince each other that they have taken
the actions required by the collusion. For example, imagine that
nodes v; and vy are trying to collude. They have a deal. If v,
takes action a; and vs takes action ao, then v; will transfer a
profit of 7 to va. Suppose both of them follow the requirement
of the deal. Then v; has an increase of 10 in utility, but vy has
a decrease of 5 in utility. Therefore, v; would like to transfer a
profit of 7 to ve, such that both of them benefit from the collu-
sion. However, the possibility of this profit transfer depends on
if v can convince v; about its action, so we design a method to
make it impossible for v, to convince v, that it indeed takes ac-
tion as. When vy claims that it has taken the action as, actually
it might have taken another action aj. In this case, v;’s utility
has only increased by 1 and vy’s utility has only decreased by
2. If vy trusts vy’s claim (of having taken action a9) and trans-
fers 7 to v, then vy actually loses 6 in utility while v gains 5.
If our method is used, then v; has no way to trust ve’s claim
and becomes unwilling to transfer profit to vs. In this way, all
colluding nodes become unwilling to transfer profit, and the as-
sumption of no profit transfer becomes valid.3

To implement our idea and develop our method, we need to
consider how a node can convince other nodes about its own ac-
tion. There are two basic approaches: Either the node convinces
other nodes by showing messages it has sent, or the node does
so by showing messages it has received. (Of course, it can also
use a combination of the two basic approaches.) Among the sent
messages, the only one related to its own action is its message
to the source node .S, which contains its claimed cost. The node
may attempt to convince other nodes about its action by showing
this message, but we can easily defeat its attempt as follows: We
allow each node to update its claimed cost by sending an addi-
tional message to the sender. Therefore, even if other nodes see
a (digitally signed) message with claimed cost, they still do not
know what is the claimed cost recognized by the source node
S because they have no idea whether this node has updated its
claimed cost or not.

However, the other approach is harder to prevent. In partic-
ular, there is a message received by the node that contains in-
formation about its own action—the payment message from the
source node S. Since the amount of payment is decided by the
claimed cost, showing this payment message to other nodes can
indirectly prove the node’s claimed cost that is recognized by
the sender. To deal with this difficulty, we propose a new cryp-
tographic technique called restricted verifier signature.#

30ne may suggest that v, should transfer 7 to v» only after the path and pay-
ments outcome is what they expected. However, in this case, v; can easily cheat
v, for example, by taking action a} such that, with (@, (l:)), vy gets an increase
of 9 in its utility but v> gets a decrease of 4 in its utility. Since (a/, a2 ) decides
a different path and different payments outcome, v can decline to transfer any-
thing to v, when v, takes action a..

“4Restricted verifier signature is closely related to the well known designated
verifier signature and multiple designated verifier signature [18], but is different
from both of them. Designated verifier signature schemes allow only one par-
ticipant to verify the signature. Multiple designated verifier signature schemes
allow more than one participants to verify the signature, but they require that
each such participant should be able to simulate the signature, which is not the
case with restricted verifier signature.
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When the source node .S makes a payment to a player node,
it signs its payment using a restricted verifier signature scheme.
Unlike traditional digital signatures, this restricted verifier sig-
nature can be verified only by the player node (i.e., the payee)
and a central bank.5 The player node can verify the signature
to see that the payment is valid. When the node brings this pay-
ment to the bank, the bank can also verify the signature before
clearing the transaction. Nevertheless, the restricted verifier sig-
nature scheme guarantees that the player node cannot use this
signed payment to convince other nodes about its own action,
because other nodes have no way to verify the signature—they
would suspect that this node might have forged the signature to
cheat them. Below, we outline the requirements for a restricted
verifier signature scheme. We do not give a concrete scheme in
this paper, but we conjecture that it is not hard to modify some
existing signature scheme, especially some existing designated
verifier signature scheme, to obtain a restricted verifier signature
scheme. After the discussions of designated verifier signature,
we briefly address the problem of preventing collusion across
multiple sessions.

A. Restricted Verifier Signature Scheme

A restricted verifier signature scheme consists of three spaces
and five algorithms: a key space KYES, a message space MSGS,
a signature space SIGS; a key generation algorithm KeyGen, a
signing algorithm Sign, a node’s verification algorithm NVerify,
a bank’s verification BVerify, a node’s simulation algorithm
Sim. (Here, NVerify and BVerify may be the same algorithm,
but for generality we allow them to be different.)

Intuitively, a restricted verifier signature scheme works as fol-
lows. First, KeyGen is executed, with a security parameter (i.e.,
the length of a key) as input, and it outputs the key pair (z;, ¥;)
for each node v;, where z; is the private key and y; is the public
key; in addition, KeyGen outputs (zg,yp), where x5 is the
bank’s private key and yp is the bank’s public key. When S
makes a payment to node v;, S uses Sign and x5 to compute
a signature on the payment. Upon receiving the payment, node
v; uses NVerify, ys and z; to verity the signature, and then for-
wards the payment to the bank. The bank uses BVerify, yg, and
zp to verify the signature. Note that the simulation algorithm
Sim is not directly used in the above—it is needed purely for
security purpose, as we describe below.

There are four requirements for a restricted verifier signature
scheme:

1) It must be correct in the sense that a valid signature can

always be verified by the node v; and the central bank.
2) Any signature accepted by v; must contain a valid payment
that will be honored by the bank.
3) The signature cannot be forged.
4) Any party other than v; and the bank cannot verify the
signature.
If a restricted verifier signature scheme satisfies all these four
requirements, then it can help us prevent profit transfers.
Now, we formally define these four requirements.

SNote that using virtual currency requires the existence of a central bank. Our
method does not require the bank to be online when a payment is made, although
the bank is needed when the payment is finally cleared.
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Definition 8: A restricted verifier signature scheme
(KYES, MSGS, SIGS, KeyGen, Sign, NVerify, BVerify, Sim) is
correct if for

(' R (x57y5)7 RS (xj/yj), RS ($B7yB)7~ : )
— KeyGen(KeyLen)

for all message m € MSGS

NVerfiy, _ . (m,Sign, (m)) =accept
and

BVerfiy, . .., (m,Sign, (m)) = accept.

Definition 9: A restricted verifier signature scheme
(KYES, MSGS, SIGS, KeyGen, Sign, NVerify, BVerify, Sim) sat-
isfies the binding property if for

— KeyGen(KeyLen)
for all message m € MSGS, for all ¢ € SIGS such that
NVerfiy,  , (m,o) = accept
we have that
BVerfiy, . .., (m,c) = accept.

Definition 10: A restricted verifier signature scheme
(KYES, MSGS, SIGS, KeyGen, Sign, NVerify, BVerify, Sim) is
existentally unforgeable if for

(' sy (Jis,’ys), ceey (xjvyj)7 ceey ($B7yB)7' . )
— KeyGen(KeyLen)

for all probabilistic polynomial-time algorithm Adv, for all
polynomial poly(), for all sufficiently large KeyLen

,YB,-..)) = accept]

Pr[NVerfiy?? . (Adv(....ys, ... yj,---
1

< poly(KeyLen)

and

Pr[BVerfiys? . (AdV(...,ys,...,Yj,-..,yp,...)) =accept]
1
< poly(KeyLen)

where SO is a signing oracle that replies querie messages with
the corresponding signatures of S.

In the above definition, it is required that the output of Adv in
an execution cannot be a query of Adv to SO in this execution
together with the corresponding reply.

Definition 11: A restricted verifier signature scheme
(KYES, MSGS, SIGS, KeyGen, Sign, NVerify, BVerify, Sim) is
secure against unauthorized verifiers if for

(' ) <x57y5)7 ) (‘Tﬁyj); RS (J:B7yB)7' . )
— KeyGen(KeyLen)



ZHONG AND WU: COLLUSION-RESISTANT ROUTING SCHEME FOR NONCOOPERATIVE WIRELESS AD HOC NETWORKS 591

for all message m € MSGS
o« Sign, (m) and o — Sim, (m)

are computationally indistinguishable.6

B. Prevention of Collusion Across Multiple Sessions

So far, we have focused on a single session of communica-
tions. Now, we formally show that we can prevent collusions
across multiple sessions. It is important to note that our proof is
in a repeated game model, which is an extension of the strategic
game model in Section II. The reason for extending the model
is to accommodate the consideration of collusions across two or
more sessions because the strategic game model in Section II
applies to only a single session.

To be precise, in the extended model, we have an infinitely
repeated game with discounting, where each stage is a strategic
game defined in Section II. We slightly modify the symbols used
by adding a superscript () to each variable in stage ¢. For ex-
ample, the utility of player node v; in stage 7 is denoted by uz(.T).
The total utility of v; is

oo

u:::otal — Z 5T—1u§7—)

=1

where § < 1 is a constant called the discounting factor.

For repeated games, we often need to consider histories.
Here, a history is defined as one or more continuous stages
starting from the beginning of the entire game; in these stages,
all players’ actions have been chosen and fixed. The number of
stages in a history is usually called its length.

In a repeated game, a strategy of a player specifies what ac-
tion the player should choose after each possible history. For
example, when player v; uses strategy s;, we can write v;’s ac-
tion after history H as s;(H).

Clearly, total utilities of all players are decided by the strategy
profile of all players. Denote by s (s = (s1,...,Sn)) the pro-
file of all players’ strategies. To emphasize this, we can write
the total utility of v; as uf°t2!(s). Similarly, the utilities of all
players in a stage are decided by all players’ actions chosen
by their strategies. For example, for a history H of length L,
the utility of v; in the stage after history H can be written as
ul" T (sy(H), .. su(H)).

In this extended model of repeated games, we have the fol-
lowing theorem.

Theorem 9: In the extended model, assume our scheme is
used. Let s* be the strategy profile in which all players follow
the protocol in all stages. For an arbitrary colluding player set
Ve ([Ve| > 2) using strategy profile (s; )y, v » such that

Z u%otal(s) > Z qutal(s*)

v; EVe v; €EVe

%Here, being computationally indistinguishable means that o cannot be dis-
tinguished from ¢’ by any polynomial-time adversary. See [15] for the precise
definition.
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Fig. 2. Topology of the random generated network.

there exist v;, v, € Vo and s;- # s; such that

utptal(sl) > u;otal(8)7

b and uEOta|($/)<uEOtal(S)

where s is the strategy profile of all players obtained by re-
placing the colluding players’ strategies in s* with (8;)y,eve»
and s’ is the strategy profile of all players obtained by replacing
v;’s strategy in s with s’.

(To save space, we skip the proof, which is not hard.)

Intuitively, Theorem 9 considers a group of player nodes that
try to collude across multiple sessions. We restrict our attention
to the case in which their total utility is increased because, oth-
erwise, clearly there is no incentive for the nodes to collude. In
this case, we find that at least one of the nodes (v; in the the-
orem) has incentives to deviate from the colluding strategy, so
that it gets more utility for itself. However, this deviation will
decrease the utility of another node (v, in the theorem) in the
colluding group. Hence, as long as nodes do not fully trust each
other, they are unwilling to form a colluding group.

VI. EVALUATIONS

In Section IV, we have presented a scheme that guarantees
convergence to an Admissible Strong Nash Equilibrium. In this
section, we evaluate our scheme using GloMoSim. There are
two sets of evaluations. The first is to illustrate the evolution
of nodes’ utilities and balances over time, while the second is
to illustrate the effect of collusion. Our results demonstrate that
our scheme is resistant to collusion.

A. Setup of Evaluation

We consider a random wireless network with 100 nodes dis-
tributed in a terrain area of 1000 x 1000 m. Nodes use IEEE
802.11 (at 2 Mbps) as the MAC layer protocol. The radio range
is set to 140 m.

The randomly generated network topology is shown in Fig. 2.
For clarity, we only include the labels of some nodes. A line be-
tween two nodes means that the two nodes are within the com-
munication range of each other. Each node has an initial balance
of 1000. We set ¢ = 0.001; for each node, the cost of forwarding
a unit of data is randomly chosen between 10e and 100e.
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Fig. 3. Cumulative utility of nodes as a function of simulation time.
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Fig. 4. Balance of nodes as a function of simulation time.

B. Evolution of Nodes’ Utilities and Balances

Our first set of evaluations starts from a Nash equilibrium.
The evaluation runs for 90 min, and we record the utility and
balance of each node every 2 min. We generate traffic from each
node according to Poisson arrival with mean time of 600 s. The
destination is randomly selected from the rest of nodes. The
number of units of data in each session is uniformly distributed
between 1 and 1000. A node with a negative balance cannot send
its own data before its balance gets positive again.

Figs. 3 and 4 show the cumulative utilities and balances of
seven typical nodes during the evaluation, respectively. In gen-
eral, nodes locating in the central part of the network or at a po-
sition connecting two node-dense areas (like node 16, 17, and
43) get higher cumulative utility. In contrast, nodes like 68 have
much lower cumulative utility because they have less chance
to earn money by forwarding others’ traffic. When we compare
the two figures, we can easily see that nodes’ balances are not
proportional to their cumulative utilities. For example, node 20
gets the second highest balance among these nodes, but it has
the second least utility in the end. Node 16 collects the second
largest amount of utility among these nodes, but its balance is
significantly lower than node 20. This is because node 20 has a
higher forwarding cost of 0.068/unit; it receives payments that
are only slightly higher than its costs. In comparison, node 16
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has a lower cost of 0.014/unit; the payments it receives are much
more than its costs.

C. Effect of Collusion

Our second set of evaluations shows the effect of collusion.
Consider a set of nodes that collude to deviate from a Nash equi-
librium. (Note that, without transfer of profit, “collusion” actu-
ally means that a group of nodes deviates from the equilibrium
simultaneously, in hope that each of them will benefit from the
deviation.) We measure the effect of collusion by calculating the
difference between each colluding node’s utility and its utility
in the Nash equilibrium.

First, we experiment with two different numbers of colluding
nodes: 5 and 10. For each number of colluding nodes, we record
the first 1000 instances of collusion that increase the total utility
of the collusion set. In each run, the source node, the destina-
tion node, and the set of colluding nodes are randomly selected.
Each colluding node randomly chooses one of the following ac-
tions: decreasing the claimed cost by 50%, decreasing by 20%,
increasing by 20%, and increasing by 50%. For example, if a
node’s claimed cost is 0.1/unit in the Nash equilibrium and it in-
creases its claimed cost by 50% in the collusion, then its claimed
cost is 0.15 in the collusion. In this evaluation, there are 10 units
of data in each session.

Fig. 5(a) and (b) summarize our experimental results for the
effect of collusion with 5 and 10 colluding nodes, respectively.
Due to limited space, we just show the first 20 records here.
From experimental results, we observe that most colluding
nodes do not benefit from the collusion. (In fact, most colluding
nodes suffer from the collusion.) We have not found any run
in which all colluding nodes benefit from the collusion. This
result confirms that there is no collusion that could make all
colluding nodes happy.

Fig. 6(a) and (b) demonstrate the distributions of the number
of nodes that do not get more utility in collusion than in the Nash
equilibrium. In these two figures, the height of each bar rep-
resents the percentage of records that have the corresponding
number of colluding nodes that do not benefit from the collu-
sion. We note that the sum of the percentages in each figure is
100%. This implies that, in all runs, we have a positive number
of colluding nodes getting no more utility in collusion than in
the Nash equilibrium. Therefore, there is no run in which all col-
luding nodes benefit.

Next, we focus on a set of four colluding nodes {16, 29, 32,
61}, which is a cutting set of the network. Suppose node 38 has
10 units of data to send to node 53. We simulate five representa-
tive cases of collusion and calculate the difference between each
colluding node’s utility and its utility in the Nash equilibrium.
In case 1, all the colluding nodes increase their claimed cost by
50%. In case 2, all decrease by 50%. In case 3, the first half in-
crease by 50%, and the second half decrease by 50%. In case 4,
the first half decrease by 50%, and the second half decrease by
50%. In case 5, all randomly increase or decrease claimed cost.

Fig. 7 demonstrates the effect of collusion in the five cases.
Just as in previous evaluations, in no case can all colluding nodes
benefit from collusion.

From the above numerical results, we can see that collusion
may increase average gains of a set of nodes. However, profit
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Fig. 5. Effect of collusion: Utility of each colluding node minus its utility in
the Nash equilibrium. (a) 5 colluding nodes. (b) 10 colluding nodes.

transfer is required to guarantee that every colluding node ben-
efits from the collusion. As long as profit transfer is prevented,
nodes do not have incentives to collude.

D. One-Time Payment

The one-time payment used by our scheme is very small com-
pared to the total payment. We randomly sampled 1000 sessions.
The results show that the ratio between one-time payment and
total payment is only 0.07%.

VII. RELATED WORK

A considerable amount of work has been done on the incen-
tive compatibility problems in ad hoc networks. There are two
major problems: the routing problem and the packet forwarding
problem. In the routing problem, we need a routing scheme that
computes the lowest-cost path despite of the fact that selfish
nodes can make false claims about their costs. In the packet
forwarding problem, we need a protocol that stimulates selfish
nodes to forward packets. We give a brief review of the existing
solutions.

A. Routing in Ad Hoc Networks

Anderegg and Eidenbenz [2] were the first to address the (uni-
cast) routing problem. Their solution Ad Hoc-VCG is based
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Fig. 6. Distributions of the number of colluding nodes that do not benefit from
collusion. (a) 5 colluding nodes. (b) 10 colluding nodes.
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on the famous VCG mechanism, which is the standard tool to
achieve strategyproofness. In [10], Eidenbenz et al. further con-
sidered the incentives of the service requestor and gave another
VCG-based solution. A similar problem in multicast was first
addressed by Wang et al. [34]. They showed that naive appli-
cations of VCG in the multicast scenario are not strategyproof,
and then presented a solution that achieves strategyproofness
without using VCG. Then, Zhong et al. [37] studied the com-
bined problems of routing and packet forwarding and designed a
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protocol using an integrated approach of game theory and cryp-
tography. They showed that their solution is cooperation op-
timal. In [32], Wang et al. worked on reducing overpayments
in unicast routing. Their solution, OURS, uses an elegant tech-
nique based on dummy packets and guarantees that the overpay-
ments are low regardless of which Nash equilibrium the system
converges to. As we have mentioned, all the above works on the
routing problem give good solutions to stimulate each individual
node to cooperate, assuming no subset of nodes would collude.
However, such an assumption may not be always valid in prac-
tice. In this paper, we focus on the collusion-resistant routing
problem.

An elegant result regarding collusion resistance was given by
Wang and Li in [33]: While the major results of [33] also assume
no collusion of nodes, they showed that dealing with collusion
is hard in the sense that True Group Strategyproofness cannot
be achieved. Here, “True Group Strategyproofness” is a new
solution concept defined in [33]. Unlike the standard solution
concept of Strategyproofness, True Group Strategyproofness is
suitable for scenarios in which the profits gained in collusion
can be transferred among colluding nodes. In comparison, in
this paper we study the standard solution concepts (of Group
Strategyproofness and Strong Nash Equilibrium) and propose a
method to prevent transfer of profit between colluding nodes.
Therefore, our work and the result in [33] are complementary
to each other.

B. Packet Forwarding in Ad Hoc Networks

Incentive-compatible packet forwarding is different from, but
closely related to, the routing problem. The earliest work on the
packet forwarding problem was due to Marti et al. [22]. Their
major contribution is a watchdog and a pathrater, which monitor
the reputation of nodes. Similarly, Buchegger and Le Boudec’s
solutions [4], [5] also use an approach based on reputation. In
their solutions, each node has a state machine for the repu-
tation of other nodes; the nodes update their states according
to their observations and received reports of other nodes’ be-
havior. Generous TIT-FOR-TAT, proposed by Srinivasan et al.
[30], is a packet forwarding strategy for selfish nodes. They
showed that this strategy leads to a Nash equilibrium. Recently,
Jaramillo and Srikant [19] used the theory of repeated game to
study packet forwarding. Among many other interesting results,
they proved that their mechanism DARWIN is optimal in their
game-theoretic model. In summary, all these works provide in-
centives in packet forwarding using reputation systems. They
are very different from our work because they require nodes to
monitor others’ behavior.

In this paper, we use credit, or virtual money, as compensa-
tion for participating in the game and forwarding packet. Credit
was first proposed by Buttyan and Hubaux [6], [7] for the packet
forwarding problem. Their solutions require each node to have
a piece of tamper-proof hardware. Zhong et al.’s Sprite[36] is
another simple credit-based solution, but it does not require
tamper-proof hardware. Another solution to this problem was
due to Jakobsson et al. [17], using a micro-payment scheme.
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VIII. CONCLUSION AND FUTURE WORK

Incentive-compatible routing is an important problem in
wireless ad hoc networks. In this paper, we present a systematic
study of collusion resistance in incentive-compatible routing.
We focus on two standard solution concepts—Group Strate-
gyproofness and Strong Nash Equilibrium. We show that the
former is impossible to achieve and design a scheme to achieve
the latter. When our scheme is used, the total payment needed
is bounded. Moreover, we propose a cryptographic method that
prevents profit transfer between colluding nodes, as long as
they do not trust each other unconditionally. This method can
be used together with our scheme that achieves Strong Nash
Equilibrium. Putting the results together, we have established a
theoretically sound and practically useful solution for collusion
resistance in incentive-compatible routing.

Our work can be extended in several directions. The first pos-
sibility is to consider other cost models, for example, models
in which a node can have different costs for different outgoing
links, or models in which a node needs to determine the cost(s)
with the help of its neighbors. The second possibility is to in-
clude the source and destination nodes in the routing game and
investigate their incentives in the context of collusion resistance.
The third possibility is to adapt our results to the scenario with
probabilistic packet losses. The fourth possibility is to consider
the existence of Group Strategyproof Equilibrium if admissi-
bility is relaxed. The fifth possibility is to study where the op-
timal places are to put nodes, given a certain topology, if a group
of nodes want to raise utility. The sixth possibility is to study
how many nodes a user needs to integrate in a network in order
to benefit from collusion, when profit can be transferred.

An interesting open question is related to results on a different
problem: spectrum sharing. Mathur ef al. [24], [25] found that,
in the context of spectrum sharing problem, full collusion results
in maximum throughput. Of course, their problem and objective
are both different from ours in this paper. However, it will be
interesting to consider how to integrate their results with ours to
achieve maximum system performance.

We leave all the above topics to future studies.
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