Game Theory

Department of Electronics

EL-766

Spring 2011

Lecture 13 (Communications)
April 21, 2011

- Power control
 - Classical approach
 - Game theoretic solutions

Power control for wireless systems

- Recall our wireless design example last class:
 - Physical layer performance measure: bit error rate (BER)
 - Based on the used modulation scheme: BER target can be mapped into an SIR (signal to interference ratio) target
 - Reliable communication → meet target BER/SIR
 - How can you achieve this?
 - WIRELESS SYSTEMS: INTERFERENCE LIMITTED
 - Dynamically adjust to the current interference pattern (level):
 - » Change powers
 - » Change transmission rate
 - » Waveform adaptation
 - » MAC: schedule transmission
 - » Routes: affect interference distribution in an ad hoc network

Power control

Select your power level that you exactly meet your target SIR, γ_0

- If SIR > γ_0 , use too much power interference with others

If SIR < γ₀ , packets cannot be received correctly →
 → retransmissions – energy inefficient

Power Control cont.

Assume that: Q transmitters use the same channel C_0

They have power:
$$P = (p_1, p_2, ..., p_Q)^T$$

 P_i the power at the i^{th} transmitter i = 1, 2, ..., O

The expression for SIR at receiver i is

$$SIR_i = \frac{g_{ii}p_i}{\displaystyle\sum_{j=1,j\neq i}^{\mathcal{Q}}g_{ij}p_j + n_i} \qquad \begin{array}{c} g_{ij} \text{ - link gain} \\ n_i \text{ - noise power at receiver } i \end{array}$$

 $g_{\it ij}$ - link gain

Power Control cont.

Transmitter i is supported if :

$$SIR_i \ge \gamma_0$$
 γ_0 - target SIR

$$=> p_i \ge \gamma_0 \left(\sum_{j=1, j \neq i}^{Q} \frac{g_{ij}}{g_{ii}} p_j + \frac{n_i}{g_{ii}} \right) (*)$$

power to select if all other powers are kept fixed

-Denote
$$\frac{g_{ij}}{g_{ii}} = h_{ij}$$
 $\frac{n_i}{g_{ii}} = \eta_i$

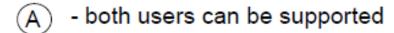
- In a system (*) has to be hold for all i = 1, 2, ..., Q

Game: strategy – power utility - SIR

Simple 2 user example

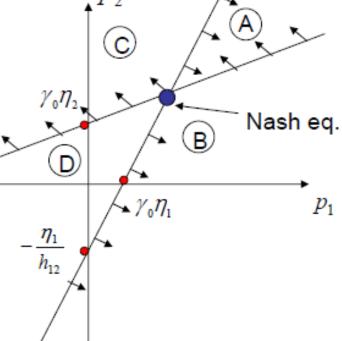
 Users adjust their powers to meet or exceed target SIR:

$$\begin{cases} p_{1} \geq \gamma_{0} (h_{12} p_{2} + \eta_{1}) \\ p_{2} \geq \gamma_{0} (h_{21} p_{1} + \eta_{2}) \end{cases} (*)$$



- only user1 can be supported
- only user2 can be supported
- none can be supported

Minimum power solution: achieved for equality in (*) $\begin{cases} p_1 = \gamma_0 (h_{12} p_2 + \eta_1) \\ p_2 = \gamma_0 (h_{21} p_1 + \eta_2) \end{cases}$



Reaction functions

$$\begin{cases} p_1 = \gamma_0 (h_{12} p_2 + \eta_1) \\ p_2 = \gamma_0 (h_{21} p_1 + \eta_2) \end{cases}$$

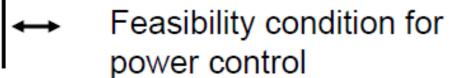
Nash equilibrium and minimum power solution

 Game theoretic solution: Classic approach

Nash equilibrium

Minimum power solution

- Existence?
- Uniqueness?
- Pareto efficiency?



Power efficiency???

Power Control Feasibility

- How many users can you support to maximize capacity, while maintaining SIR requirement?
- Feasibility conditions:

For Q users:

$$(I-H)P \ge \eta$$

$$H_{\varrho \times \varrho} \longrightarrow H_{ij} = (h_{ij}) \qquad h_{ij} = \begin{cases} \gamma_0 \frac{g_{ij}}{g_{ii}} & i \neq j \\ 0 & i = j \end{cases}$$

$$\eta = (\eta_1, \eta_2, \dots, \eta_{\varrho})^T$$