Game Theory

Department of Electronics

EL-766

Spring 2011

Lecture 13 (Game Theory)
April 21, 2011

Learning in games

- Why learning?
 - For introspection, the rules of the game, rationality of the players, payoff functions – all common knowledge
 - Another problem: for multiple equilibria, how players come to expect the same equilibrium?
- Applicability
- Repeated games
- Teach opponent to play a best response to a particular action, by repeating it over and over again

Example of sophisticated learning

How would you play this game, if you were player 1?

	L	R
U	1,0	3,2
D	2,1	4,0

Sophisticated learning?

Most learning theory

models for which the incentive is small to alter the future play of the opponents.

– Examples:

- large anonymous population: population size large compared to the discount factor
- Players locked in their choices and discount factor small compared to maximum speed at which the system can possibly adjust

Common models for learning

Fictitious play

 Players observe only their own matches and play a best response to the historical frequency of play

Partial best-response

 A fixed portion of users switches each period from its current action to a BR to the aggregate statistics from the previous period

Replicator Dynamics

 The fraction of the population using a given strategy, grows proportionally to that strategy's current payoff.

One type of learning: Cournot adjustment

 Unique Nash eq. is at the intersection of the reaction curves

Fictitious play

- Repeated game
- Stationary assumption
- Each player: belief of opponents "strategy" by looking at what happened
- Player then plays best response (BR) according the his belief
- Belief: a prediction of the opponent action distribution, i.e. the degree to which player i believes player j will play a certain action.
- Players choose their actions in each period, s.t. to maximize their expected payoff, with respect to their belief for the current period.

Updating beliefs

Player i: initial weight function

$$K_0^i: S^{-i} \to \mathbb{R}^+$$

Game iteratively repeated → K updated:

$$K_t(s^{-i}) = K_{t-1}(s^{-i}) + \begin{cases} 1, & \text{if } s_{t-1}^{-i} = s^{-i} \\ 0, & \text{ow.} \end{cases}$$

- Given the frequency vector K

 updates beliefs
 - The belief player i has at time t about its opponent to play s-i at time t:

$$\gamma_t^i \left(s^{-i} \right) = \frac{K_t^i \left(s^{-i} \right)}{\sum_{\hat{s} \in S^{-i}} K_t^i \left(\hat{s}^{-i} \right)} \quad \leftarrow \quad \text{Simple normalization}$$