
Cryptography Lecture 10
Elliptic curve cryptography, key distribution and trust

Key length

From ”ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”

Elliptic curves

I An elliptic curve is the set of solutions to the equation

y2 = x3 + ax2 + bx + c

I These solutions are not ellipses, the name elliptic is used for
historical reasons and has do to with the integrals used
when calculating arc length in ellipses:∫ b

a

dx√
x3 + ax2 + bx + c

Elliptic curves

I An elliptic curve is the set

E = {(x , y) : y2 = x3 + ax2 + bx + c}

I Examples:

x

y
x3 − x

E

x

y
x3 − x + 1

E

Elliptic curves

I Most of the time a “depressed” cubic is enough

E = {(x , y) : y2 = x3 + bx + c}

I Examples:

x

y
x3 − x

E

x

y
x3 − x + 1

E

Elliptic curves

I You do not want “singular curves” with multiple roots

E = {(x , y) : y2 = x3 + bx + c}

I Examples:

x

y
x3 + x2 − x − 1

E

x

y
x3 − x + 1

E

Elliptic curves

I An elliptic curve is the set

E = {(x , y) : y2 = x3 + bx + c}

I Previously we have used
integers (mod p) and
multiplication

I We need a group
operation on points of E ,
we’ll call it “addition”

x

y

E

Elliptic curves

I An elliptic curve is the set

E = {(x , y) : y2 = x3 + bx + c}

I Previously we have used
the multiplicative group of
integers mod p

I We need a group
operation on points of E ,
we’ll call it “addition”

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I Draw a straight line through
the two points, it will
intersect the elliptic curve in
a third point. Mirror that in
the x-axis

I If adding a point to itself,
use the tangent line

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I Draw a straight line through
the two points, it will
intersect the elliptic curve in
a third point.

Mirror that in
the x-axis

I If adding a point to itself,
use the tangent line

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I Draw a straight line through
the two points, it will
intersect the elliptic curve in
a third point. Mirror that in
the x-axis

I If adding a point to itself,
use the tangent line

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I Draw a straight line through
the two points, it will
intersect the elliptic curve in
a third point. Mirror that in
the x-axis

I If adding a point to itself,
use the tangent line

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I There is one special case: if
the line through the two
points is vertical, it will not
intersect the elliptic curve
again

I We add the point (∞,∞)
to E

I This is the neutral element,
the “0”

x

y

E

Addition on elliptic curves

I Given two elements in the group, construct a third

I The point (∞,∞) to E is
the neutral element, the “0”

I That is,
(∞,∞) + (x , y) = (x , y)

I This also means that
−(x , y) is (x ,−y)

x

y

E

Addition on elliptic curves

Addition law: On the elliptic curve

E = {(x , y) : y2 = x3 + bx + c},

(x3, y3) = (x1, y1) + (x2, y2)

is calculated as follows:

I If (x1, y1) = (x2,−y2), then (x3, y3) = (∞,∞)

I If (x1, y1) = (∞,∞), then (x3, y3) = (x2, y2) (and the other
way around)

I If (x1, y1) = (x2, y2), then let m = (3x2
1 + b)/(2y1),

otherwise let m = (y2 − y1)/(x2 − x1), and let

(x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1)

Multiplication on elliptic curves

I Multiplication with an integer is defined through repeated
addition

3(x , y) = (x , y) + (x , y) + (x , y)

x

y

E

Multiplication on elliptic curves

I Multiplication with an integer is defined through repeated
addition

3(x , y) = (x , y) + (x , y) + (x , y)

x

y

E

Multiplication on elliptic curves

I Multiplication with an integer is defined through repeated
addition

3(x , y) = (x , y) + (x , y) + (x , y)

x

y

E

Discrete elliptic curves
I We want to have a discrete set of points. We arrange this

by having coordinates mod p

E = {(x , y) : y2 = x3 + bx + c mod p}

I This is not so easy to draw in a diagram, remember, it is y2

mod p

x

y

E

x3 − x + 1

Discrete elliptic curves

I Example:

E = {(x , y) : y2 = x3 + 4x + 4 mod 5}

The points in E are

x = 0 gives y2 = 4 so that y = 2 or y = 3

x = 1 gives y2 = 9 = 4 so that y = 2 or y = 3

x = 2 gives y2 = 20 = 0 so that y = 0

x = 3 gives y2 = 43 = 3, no square root

x = 4 gives y2 = 84 = 4 so that y = 2 or y = 3

x =∞ gives y =∞

Discrete elliptic curves

I Example:

E = {(x , y) : y2 = x3 + 4x + 4 mod 5}

The points in E are

x

y
(∞,∞)

Elliptic curves

I Addition as we defined it still works on this set (but lines
mod p need to be handled)

I We now have the group operations to use instead of integer
multiplication and exponentiation

I Hasse’s Theorem: The number of points N in an Elliptic
curve E mod p obeys

p − 1− 2
√
p < N < p − 1 + 2

√
p

Elliptic curves

I Addition as we defined it still works on this set (but lines
mod p need to be handled)

I We now have the group operations to use instead of integer
multiplication and exponentiation

I Hasse’s Theorem: The number of points N in an Elliptic
curve E mod p obeys

p − 1− 2
√
p < N < p − 1 + 2

√
p

Addition on elliptic curves

Addition law: On the elliptic curve

E = {(x , y) : y2 = x3 + bx + c},

(x3, y3) = (x1, y1) + (x2, y2)

is calculated as follows:

I If (x1, y1) = (x2,−y2), then (x3, y3) = (∞,∞)

I If (x1, y1) = (∞,∞), then (x3, y3) = (x2, y2) (and the other
way around)

I If (x1, y1) = (x2, y2), then let m = (3x2
1 + b)/(2y1),

otherwise let m = (y2 − y1)/(x2 − x1), and let

(x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1)

Addition on elliptic curves

Addition law: On the elliptic curve

E = {(x , y) : y2 = x3 + bx + c},

(x3, y3) = (x1, y1) + (x2, y2)

is calculated as follows:

I If (x1, y1) = (x2,−y2), then (x3, y3) = (∞,∞)

I If (x1, y1) = (∞,∞), then (x3, y3) = (x2, y2) (and the other
way around)

I If (x1, y1) = (x2, y2), then let m = (3x2
1 + b)/(2y1),

otherwise let m = (y2 − y1)/(x2 − x1), and let

(x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1)

Elliptic curves

I Addition as we defined it still works on this set (but lines
mod p need to be handled)

I We now have the group operations to use instead of integer
multiplication and exponentiation

I Hasse’s Theorem: The number of points N in an Elliptic
curve E mod p obeys

p − 1− 2
√
p < N < p − 1 + 2

√
p

Discrete Logarithms on elliptic curves

I Remember the discrete logarithm problem: given x and a
primitive root g , find k so that

x = gk mod p

I There is an analog on elliptic curves: given two points A
and B on an elliptic curve, find k so that

B = kA = A + A + . . .+ A

I This might seem different, but is the equivalent problem.
The only difference is the group operation name
(“multiplication or “addition”)

Discrete Logarithms on elliptic curves

I The discrete logarithm for elliptic curves: given two points
A and B on an elliptic curve, find k so that

B = kA = A + A + . . .+ A

I There is an analog for the Polig-Hellman algorithm.
This works well when the smallest integer n such that
nA =∞ has only small factors

Discrete Logarithms on elliptic curves

I The discrete logarithm for elliptic curves: given two points
A and B on an elliptic curve, find k so that

B = kA = A + A + . . .+ A

I There is an analog for the Polig-Hellman algorithm

I The baby step-giant step algorithm works, but is
impractical since it needs a lot of memory

Discrete Logarithms on elliptic curves

I The discrete logarithm for elliptic curves: given two points
A and B on an elliptic curve, find k so that

B = kA = A + A + . . .+ A

I There is an analog for the Polig-Hellman algorithm

I The baby step-giant step algorithm is impractical

I But most importantly, there is no analog for the index
calculus

I Integer mod p index calculus is based on using small base
numbers (not small exponents as in Polig-Hellman)

I But there are no points on E that are closer to “0” than
any other points, the distance to (∞,∞) is the same for all
other points

Key length

From ”ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”

Trapdoor one-way functions

I A trapdoor one-way function is a function that is easy to
compute but computationally hard to reverse

I Easy to calculate xA from x
I Hard to invert: to calculate x from xA

I A trapdoor one-way function has one more property, that
with certain knowledge it is easy to invert, to calculate x
from xA

I There is no proof that trapdoor one-way functions exist, or
even real evidence that they can be constructed

Standard (m mod p) ElGamal encryption

I Choose a large prime p, and a primitive root α mod p.
Also, take a random integer a and calculate
β = αa mod p

I The public key is the values of p, α, and β, while the secret
key is the value a

I Encryption uses a random integer k with gcd(k , p − 1) = 1,
and the ciphertext is the pair (αk , βkm), both mod p

I Decryption is done with a, by calculating

(αk)−a(βkm) = (α−ak)(αakm) = m mod p

Elliptic curve ElGamal encryption

I Choose an elliptic curve E mod a large prime p, and a
point α on E . Also, take a random integer a and calculate
β = aα

I The public key is E and the values of p, α, and β, while the
secret key is the value a

I Encryption uses a random integer k , and the ciphertext is
the pair (kα, kβ + m)

I Decryption is done with a, by calculating

−a(kα) + (kβ + m) = −akα + k(aα) + m = m

Representing plaintext on elliptic curves

I Unfortunately, it is not simple to represent a given plaintext
as a point on E

I Even worse, there is actually no polynomial time algorithm
that can write down all points of an elliptic curve

I There is a method that will work with high probability:
I The message m should be in the x-coordinate, but there is

no guarantee that m3 + bm + c is a square mod p
I Each number x has a probability of about 1/2 that

x3 + bx + c is a square, so put a few bits at the end of m
and run through all possible values

I If the number of possible values is K , the risk of failure is
2−K

Standard (integer mod p) Diffie-Hellman key
exchange

I Use two one-way functions f and g : exponentiation mod p
(of a primitive root α), the symmetry is

(αa)b = (αb)a mod p

I This cannot be used for encryption/signing because one
does not recover a or b.

I But it can be used for key exchange:
parameters p and α

I Alice takes a secret random a and makes αa public
I Bob takes a secret random b and makes αb public
I Both can now create k = (αa)b = (αb)a mod p

Elliptic curve Diffie-Hellman key exchange

I Use two one-way functions f and g : multiplication on an
elliptic curve E (of a point α), the symmetry is

b(aα) = a(bα)

I This cannot be used for encryption/signing because one
does not recover a or b.

I But it can be used for key exchange:
parameters E , p and α

I Alice takes a secret random a and makes aα public
I Bob takes a secret random b and makes bα public
I Both can now create k = b(aα) = a(bα)

Standard (mod p) ElGamal signatures

I Choose a large prime p, and a primitive root α mod p.
Also, take a random integer a and calculate β = αa mod p

I The public key is the values of p, α, and β, while the secret
key is the value a

I Signing uses a random integer k with gcd(k , p − 1) = 1,
and the signature is the pair (r , s) where

r = αk mod p

s = k−1(m − ar) mod (p − 1)

I Verification is done comparing βr r s and αm mod p, since

βr r s = αarαk(m−ar)/k = αm mod p

Elliptic curve ElGamal signatures
I Choose an elliptic curve E mod a large prime p, and a

point α on E . Also, take a random integer a and calculate
β = aα

I The public key is E and the values of p, α, and β, while the
secret key is the value a

I Signing uses a random integer k with gcd(k , n) = 1 where
n is the number of points on E . The signature is created by
inverting k mod n and forming the pair (r , s) as

r = kα

s = k−1(m − arx)

I Verification is done comparing rxβ + sr and mα, since

rxβ + sr = rx(aα) +
(
k−1(m − arx)

)
(kα)

= rx(aα) + mα− arxα = mα

Trapdoor one-way functions

A trapdoor one-way function is a function that is easy to
compute but computationally hard to reverse

I Easy to calculate f (x) from x

I Hard to invert: to calculate x from f (x)

A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from f (x)

There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed. Examples:

I RSA (factoring)

I Knapsack (NP-complete but insecure with trapdoor)

I Diffie-Hellman + ElGamal (discrete log)

I EC Diffie-Hellman + EC ElGamal (EC discrete log)

Key Management

I The first key in a new connection
or association is always delivered
via a courier

I Once you have a key, you can
use that to send new keys

I If Alice shares a key with Trent
and Trent shares a key with Bob,
then Alice and Bob can exchange
a key via Trent (provided they
both trust Trent)

Key distribution center

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can exchange a key via Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

Key distribution center

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can exchange a key via Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(ID

B
||K

AB
)

Key distribution center

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can exchange a key via Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(ID

B
||K

AB
) 2:

E
K
BT (ID

A ||K
AB)

Key distribution center, key server

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can receive a key from Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(I
D B

)

Key distribution center, key server

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can receive a key from Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(I
D B

)

2:
EK

AT
(ID

B
||K

AB
)

2:
E
K
BT (ID

A ||K
AB)

Key distribution center, Blom key
pre-distribution

I If Alice shares a key with Trent and Trent shares a key with
Bob, and Alice and Bob each have a public id rA, rB , they
can recieve key-generation info from Trent (provided they
both trust Trent)

Trent
Key distribution center

KAT ,KBT , a, b, c
aU = a + brU , bU = b + crU

Alice, KAT , rA Bob, KBT , rB

EK
AT

(aA
, b

A
) E

K
BT (a

B , b
B)

KAB = aA + bArB
= aB + bB rA

Key distribution center, Station-To-Station
(STS) protocol

I What about Diffie-Hellman key exchange?

I Eve can do an “intruder-in-the-middle”

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

αa mod p

αb mod p

Key distribution center, Station-To-Station
(STS) protocol

I What about Diffie-Hellman key exchange?

I Eve can do an “intruder-in-the-middle”

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBTEve

αa mod p

αe mod p

αe mod p

αb mod p

Key distribution center, Station-To-Station
(STS) protocol

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can use Trent to verify that they
exchange key with the right person

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

αa mod p

αb mod p

Key distribution center, Station-To-Station
(STS) protocol

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can use Trent to verify that they
exchange key with the right person

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

αa, EKAB
(sigA(αa, αb))

αb, EKAB
(sigB(αa, αb))

Key distribution center, Station-To-Station
(STS) protocol

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can use Trent to verify that they
exchange key with the right person

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

αa, EKAB
(sigA(αa, αb))

αb, EKAB
(sigB(αa, αb))

ve
r B

? ver
A ?

Key distribution center, Station-To-Station
(STS) protocol

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can use Trent to verify that they
exchange key with the right person

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

αa, EKAB
(sigA(αa, αb))

αb, EKAB
(sigB(αa, αb))

ve
r B

? ver
A ?

ve
r B

verA

Key distribution center

I If Alice shares a key with Trent and Trent shares a key with
Bob, then Alice and Bob can exchange a key via Trent
(provided they both trust Trent)

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(ID

B
||K

AB
) 2:

E
K
BT (ID

A ||K
AB)

Key distribution center, replay attacks

I But perhaps Eve has broken a previously used key, and
intercepts Alice’s request

I Then she can fool Bob into communicating with her

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

Eve

1: E
KAT

(ID
B
||KAB

)

Key distribution center, replay attacks

I But perhaps Eve has broken a previously used key, and
intercepts Alice’s request

I Then she can fool Bob into communicating with her

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

Eve

1: E
KAT

(ID
B
||KAB

)
2: old E

K
BT (ID

A ||K
AB)

Key distribution center, wide-mouthed frog

I Alice and Trent add time stamps to prohibit the attack

I But now, Eve can pretend to be Bob and make a request to
Trent

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(t A
||ID

B
||K

A
B

)

Key distribution center, wide-mouthed frog

I Alice and Trent add time stamps to prohibit the attack

I But now, Eve can pretend to be Bob and make a request to
Trent

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
E K

AT
(t A
||ID

B
||K

A
B

) 2:
E
K
BT (t

T ||ID
A ||K

AB)

Key distribution center, wide-mouthed frog

I Alice and Trent add time stamps to prohibit the attack

I But now, Eve can pretend to be Bob and make a request to
Trent

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

Eve

1:
E K

AT
(t A
||ID

B
||K

A
B

) 2:
E
K
BT (t

T ||ID
A ||K

AB)

3: E
K
BT (tT ||ID

A ||K
AB)

Key distribution center, wide-mouthed frog

I Alice and Trent add time stamps to prohibit the attack

I But now, Eve can pretend to be Bob and make a request to
Trent, who will forward the key to Alice

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

Eve

1:
E K

AT
(t A
||ID

B
||K

A
B

) 2:
E
K
BT (t

T ||ID
A ||K

AB)

3: E
K
BT (tT ||ID

A ||K
AB)

4:
EK

AT
(t
′
T
||ID

B
||K

AB
)

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
ID
A
||ID

B
||r 1

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
ID
A
||ID

B
||r 1

2: EKAT
(KS ||IDB ||r1||EKBT

(KS ||IDA))

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
ID
A
||ID

B
||r 1

2: EKAT
(KS ||IDB ||r1||EKBT

(KS ||IDA))

3: EKBT
(KS ||IDA)

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
ID
A
||ID

B
||r 1

2: EKAT
(KS ||IDB ||r1||EKBT

(KS ||IDA))

3: EKBT
(KS ||IDA)

4: EKS
(r2)

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBT

1:
ID
A
||ID

B
||r 1

2: EKAT
(KS ||IDB ||r1||EKBT

(KS ||IDA))

3: EKBT
(KS ||IDA)

4: EKS
(r2)

5: EKS
(r2 − 1)

Key distribution center, Needham-Schroeder
key agreement

I Another variation is to use nonces to prohibit the replay
attack

I If Eve ever breaks one session key, she can get Bob to reuse
it

Trent
Key distribution center

KAT ,KBT

Alice, KAT Bob, KBTEve

1: EKBT
(KS ||IDA)

2: EKS
(r2)

3: EKS
(r2 − 1)

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

I A client, Cliff

I An authentication server, Trent

I An authorization server, Grant

I A service server, Serge

I They share keys KC , KG , KS

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

I A client, Cliff

I An authentication server, Trent

I An authorization server, Grant

I A service server, Serge

I They share keys KC , KG , KS

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

1 1. Cliff sends Trent IDC ||IDG

2. Trent responds width EKC
(KCG)||TGT

where TGT = IDG ||EKG
(IDC ||t1||KGC)

3. Cliff sends Grant EKCG
(IDC ||t2)||TGT

4. Grant responds with EKCG
(KCS)||ST

where ST = EKS
(IDC ||t3||texpir.||KCS)

5. Cliff sends Serge EKCS
(IDC ||t4)||ST

and can then use Serge’s services

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

1

2

1. Cliff sends Trent IDC ||IDG

2. Trent responds width EKC
(KCG)||TGT

where TGT = IDG ||EKG
(IDC ||t1||KGC)

3. Cliff sends Grant EKCG
(IDC ||t2)||TGT

4. Grant responds with EKCG
(KCS)||ST

where ST = EKS
(IDC ||t3||texpir.||KCS)

5. Cliff sends Serge EKCS
(IDC ||t4)||ST

and can then use Serge’s services

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

1

2 3

1. Cliff sends Trent IDC ||IDG

2. Trent responds width EKC
(KCG)||TGT

where TGT = IDG ||EKG
(IDC ||t1||KGC)

3. Cliff sends Grant EKCG
(IDC ||t2)||TGT

4. Grant responds with EKCG
(KCS)||ST

where ST = EKS
(IDC ||t3||texpir.||KCS)

5. Cliff sends Serge EKCS
(IDC ||t4)||ST

and can then use Serge’s services

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

1

2 3

4 1. Cliff sends Trent IDC ||IDG

2. Trent responds width EKC
(KCG)||TGT

where TGT = IDG ||EKG
(IDC ||t1||KGC)

3. Cliff sends Grant EKCG
(IDC ||t2)||TGT

4. Grant responds with EKCG
(KCS)||ST

where ST = EKS
(IDC ||t3||texpir.||KCS)

5. Cliff sends Serge EKCS
(IDC ||t4)||ST

and can then use Serge’s services

Kerberos

Trent
KC ,KG

Grant
KG ,KS

Cliff
KC

Serge
KS

1

2 3

4

5

1. Cliff sends Trent IDC ||IDG

2. Trent responds width EKC
(KCG)||TGT

where TGT = IDG ||EKG
(IDC ||t1||KGC)

3. Cliff sends Grant EKCG
(IDC ||t2)||TGT

4. Grant responds with EKCG
(KCS)||ST

where ST = EKS
(IDC ||t3||texpir.||KCS)

5. Cliff sends Serge EKCS
(IDC ||t4)||ST

and can then use Serge’s services

Public key distribution

I Public key distribution uses a Public Key Infrastructure
(PKI)

I Alice sends a request to a Certification Authority (CA) who
responds with a certificate, ensuring that Alice uses the
correct key to communicate with Bob

Certification Authority
sT , {ei}

Alice, vT , dA Bob, vT , dB

Public key distribution, using Certification
Authorities

I Public key distribution uses a Public Key Infrastructure
(PKI)

I Alice sends a request to a Certification Authority (CA) who
responds with a certificate, ensuring that Alice uses the
correct key to communicate with Bob

Certification Authority
sT , {ei}

Alice, vT , dA Bob, vT , dB

1:
ID
B

2:
e B
, s
ig
n T

(ID
B
, e

B
)

Public key distribution, using X.509
certificates

I The CAs often are commercial companies, that are assumed
to be trustworthy

I Many arrange to have the root certificate packaged with IE,
Mozilla, Opera,. . .

I They issue certificates for a fee

I They often use Registration Authorities (RA) as sub-CA for
efficiency reasons

Public key distribution, X.509 certificates in
your browser

Public key distribution, using web of trust

Alice

Bob

Charlie

Diana

Eric

Fred

I No central CA

I Users sign each other’s public
key (hashes)

I This creates a “web of trust”

I Each user keeps a keyring with
the keys (s)he has signed

I The secret key is stored on a
secret keyring, on h{er,is}
computer

I The public key(s) and their
signatures are uploaded to key
servers

Public key distribution, using web of trust
(PGP and GPG)

Alice

Bob

Charlie

Diana

Eric

Fred

I No central CA

I Users sign each other’s public
key (hashes)

I This creates a “web of trust”

I Each user keeps a keyring with
the keys (s)he has signed

I The secret key is stored on a
secret keyring, on h{er,is}
computer

I The public key(s) and their
signatures are uploaded to key
servers

Public key distribution, a web-of-trust path

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

I This is a client-server handshake procedure to establish key

I The server (but not the client) is authenticated (by its
certificate)

Client Server

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public
key systems + symmetric key systems + hash functions +
compression algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different)
random number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with
the PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for
the two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for
the previous handshake messages

Client Server

ClientHello

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public
key systems + symmetric key systems + hash functions +
compression algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different)
random number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with
the PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for
the two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for
the previous handshake messages

Client Server

ClientHello

ServerHello,. . .

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public
key systems + symmetric key systems + hash functions +
compression algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different)
random number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with
the PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for
the two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for
the previous handshake messages

Client Server

ClientHello

ServerHello,. . .

ClientKeyExchange

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public
key systems + symmetric key systems + hash functions +
compression algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different)
random number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with
the PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for
the two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for
the previous handshake messages

Client Server

ClientHello

ServerHello,. . .

ClientKeyExchange

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public
key systems + symmetric key systems + hash functions +
compression algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different)
random number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with
the PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for
the two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for
the previous handshake messages

Client Server

ClientHello

ServerHello,. . .

ClientKeyExchange

. . . ,Finished

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

Client Server

ClientHello

ServerHello,. . .

ClientKeyExchange

. . . ,Finished

I SSL 1.0 (no public release), 2.0 (1995), 3.0 (1996),
originally by Netscape

I TLS 1.0 (1999), changes that improve security, among
other things how random numbers are chosen

I Sensitive to CBC vulnerability discovered 2002,
demonstrated by BEAST attack 2011

I Current problem: TLS 1.0 is fallback if either end does not
support higher versions

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS)

Client Server

ClientHello

ServerHello,. . .

ClientKeyExchange

. . . ,Finished

I TLS 1.1 (2006), added protection against CBC attacks by
explicit IV specification

I TLS 1.2 (2008), e.g., change MD5-SHA1 to SHA256

I Later (2011), never fall back to SSL 2.0

