Department of Electronics

Cryptography

Fall 2019
Hasan Mahmood
hasan@qau.edu.pk

Week 8 (23 \& 24 October 2019)

The Hash Functions

- Non-invertibility properties
- A cryptographic hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length
- For example, 160 bits

Hash function properties

1. Given a message m, the message digest $h(m)$ can be calculated very quickly.
2. Given a y, it is computationally infeasible to find an m^{\prime} with $h\left(m^{\prime}\right)=y$ (in other words, h is a one-way, or preimage resistant, function). Note that if y is the message digest of some message, we are not trying to find this message. We are only looking for some m^{\prime} with $h\left(m^{\prime}\right)=y$.
3. It is computationally infeasible to find messages m_{1} and m_{2} with $h\left(m_{1}\right)=h\left(m_{2}\right)$ (in this case, the function h is said to be strongly collision-free).

Hash function

- Collision free (weakly)
- Preimage resistance
- Requirement 3 is the hardest one to satisfy
- In 2004, Wang, Feng, Lai, and Yu fond many examples of collisions for the popular hash functions MD4, MD5, HAVAL-128 and RIPEMD
- This means that a valid digital signature on one certificate is also valid for the other certificate.
- SHA-1 collision can be determined with around 2^{69} calculations

Hash Example

- Efficient in computational requirements
- Start with a message m of arbitrary length L
- Break the message m into b-bit blocks, where $n \ll L$
- Denote these n-bit blocks by m_{j}

$$
m=\left[m_{1}, m_{2}, \cdots, m_{l}\right]
$$

- The length, $l=$ ceil $[L / n]$, last block is padded with zeroes
- We write the j th block m_{j} as row vector

$$
m_{j}=\left[m_{j 1}, m_{j 2}, m_{j 3}, \cdots, m_{j n}\right]
$$

Example

- Stack these row vectors to form an array

$$
\left.\begin{array}{rl}
h_{\mathbf{i}}=\pi_{1 i} \oplus m_{2 i} \oplus \cdots \oplus m_{l i} \cdot & {\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{l 1} & m_{l 2} & \cdots & m_{l n}
\end{array}\right]} \\
\Downarrow & \Downarrow \\
\Downarrow & \Downarrow \\
\oplus & \oplus \\
\oplus & \oplus \\
\Downarrow & \Downarrow \\
\Downarrow & \Downarrow \\
c_{1} & c_{2} \\
\cdots & c_{n}
\end{array}\right]=h(m) .
$$

Hash example

- Input is arbitrary length message
- Output is n-bit message digest
- It is not considered cryptographically secure
- Practical cryptographic hash functions typically make use of several other bit level operations
- Need to avoid collision
- Bit rotation is used, similar to DES

Simple Hash with rotation operation

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{22} & m_{23} & \cdots & m_{21} \\
m_{33} & m_{34} & \cdots & m_{32} \\
\vdots & \vdots & \ddots & \vdots \\
m_{1 l} & m_{l, l+1} & \cdots & m_{l, l-1}
\end{array}\right]} \\
& \Downarrow \\
& \Downarrow \\
& \Downarrow \\
& \oplus \\
& \oplus \\
& \oplus \\
& \Downarrow \\
& \Downarrow
\end{aligned} \underset{\oplus}{\Downarrow}
$$

The Secure Hash Algorithm (SHA)

- SHA-1 produces 160 -bit hash
- The original message is broken into a set of fixed size blocks
- Last block is padded to fill out the block
- Message blocks are processed given sequence of rounds that use a compression function h^{\prime}
- Current block is combined with the result of previous rounds
- In a good compression function, makes each input bit effect as many output bits as possible.

SHA-1

Take original message and pad it with a 1 bit followed by a sequence of 0 bits
Enough 0 bits are appended to make the mew message 64 bits shout of the next highest multiple of 512 bits in length
We append the 64 bit representation of the length T of the message
For example, if the original message has 2800 bits, we add a 1 and 207 Os to obtain a new message of length $3008=6 \times 512-64$
Since 2800=101011110000, we append 52 0s followed by this number Message length is 3072, broken down into six blocks of length 512

SHA operations

1. $X \wedge Y=$ bitwise "and", which is bitwise multiplication mod 2 , or bitwise minimum.
2. $X \vee Y=$ bitwise "or", which is bitwise maximum.
3. $X \oplus Y=$ bitwise addition $\bmod 2$.
4. $\neg X$ changes 1 s to 0 s and 0 s to 1 s .
5. $X+Y=$ addition of X and $Y \bmod 2^{32}$, where X and Y are regarded as integers mod 2^{32}.
6. $X \hookleftarrow r=$ shift of X to the left by τ positions (and the beginning wraps around to the end).

SHA operations

$$
f_{t}(B, C, D)=\left\{\begin{array}{cl}
(B \wedge C) \vee((\neg B) \wedge D) & \text { if } 0 \leq t \leq 19 \\
B \oplus C \oplus D & \text { if } 20 \leq t \leq 39 \\
(B \wedge C) \vee(B \wedge D) \vee(C \wedge D) & \text { if } 40 \leq t \leq 59 \\
B \oplus C \oplus D & \text { if } 60 \leq t \leq 79
\end{array}\right.
$$

Define constants $K_{0}, \ldots, K_{i 9}$ as follows:

$$
K_{t}= \begin{cases}5 A B 27999 & \text { if } 0 \leq t \leq 19 \\ 6 E D 9 E B A 1 & \text { if } 20 \leq t \leq 39 \\ \text { BF1BBCDC } & \text { if } 40 \leq t \leq 59 \\ \text { CA62C1D6 } & \text { if } 60 \leq t \leq 79\end{cases}
$$

The SHA-1 Algorithm

$$
\begin{aligned}
& H_{0}=67452301 \\
& H_{1}=E F C D A B 89 \\
& H_{2}=98 B A D C F E \\
& H_{3}=10325476 \\
& H_{4}=C 3 D 2 E 1 F 0 .
\end{aligned}
$$

1. Start with a message m. Append bits, as specificd in the text, to obtain a message y of the form $y=m_{1}\left\|m_{2}\right\| \cdots \| m_{L}$, where each m_{i} has 512 bits.
2. Initialize $H_{0}=67452301, H_{1}=E F C D A B 89, H_{2}=$ $98 B A D C F E, H_{3}=10325476, H_{4}=C 3 D 2 E 1 F 0$.
3. For $i=0$ to $L-1$, do the following:
(a) Write $m_{i}=W_{0}\left\|W_{l}\right\| \cdots \| W_{15}$, where each W_{j} has 32 bits.
(b) For $t=16$ to 79 , let $W_{t}=\left(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus\right.$ $\left.W_{t-16}\right) \hookleftarrow 1$
(c) Let $A=H_{0}, B=H_{1}, C=H_{2}, D=H_{3}, E=H_{4}$.
(d) For $t=0$ to 79, do the following steps in succession: $T=(A \hookleftarrow 5)+f_{t}(B, C, D)+E+W_{t}+K_{t}, E=D$, $D=C, C=(B \hookleftarrow 30), B=A, A=T$.
(e) Let $H_{0}=H_{0}+A, \quad H_{1}=H_{1}+B, H_{2}=H_{2}+C$, $H_{3}=H_{3}+D_{1} \quad H_{4}=H_{4}+E$.
4. Output $H_{0}\left\|H_{1}\right\| H_{2}\left\|H_{3}\right\| H_{4}$. This is the 160 -bit hash value.

SHA-1 Step 3

Discrete Logarithm

- Based on difficulty of factoring, discrete logarithm has similar benefits from complexity
- Fix a prime p, let α and β be nonzero integers $\bmod p$, suppose,

$$
\beta \equiv \alpha^{x} \quad(\bmod p) .
$$

- The problem of finding x is called the discrete logarithm problem
- If n is the smallest positive integer such that

$$
\alpha^{n} \equiv 1(\bmod p)
$$

- We may assume that, (discrete log of b with respect to $\mathrm{a}, 0 \leq x<\mathrm{n}$)

$$
x=L_{\alpha}(\beta)
$$

Discrete Logarithms, example

- $P=11, \alpha=2$
- Since $2^{6}=9(\bmod 11)$
- We have $L_{2}(9)=6$
- Also, $2^{6}=2^{16}=2^{20}=9(\bmod 11)$, so we consider taking any one of 6,16 , 26 as the discrete logarithm
- Smallest nonnegative value, namely 6
- α is taken to be a primitive root of $\bmod p$, every β is a power of α (mod p)
- If α is not a primitive root, then discrete logarithm will not be defined for certain values of β

Discrete log properties

- For small p, it is easy to calculate discrete logs by exhaustive search, when p is large, this is not feasible
- Discrete logs are hard to compute in general, basis of several ciphers
- Size of the largest primes for which discrete logs can be computed is approximately the same size as the size of the largest integers that could be factored
- A function $f(x)$ is called one-way function if $f(x)$ is easy to compute, given y, it is computationally infeasible to find x with $\mathrm{f}(x)=y$
- It is easy to compute $\alpha^{x}(\bmod p)$, but solving $\alpha^{x}=\beta$ for x is hard
- Multiplication of large primes can also be regarded as (probable) one-way function
- It is easy to multiply large primes but difficult to factor the result to recover the primes

Bit Commitment

- Alice claims that she has a method to predict the outcome of games
- She wans to sell her method to Bob
- Bob needs proof, for the game to be played coming weekend
- Alice does not want to disclose the result because Bob may bet
- Alice offers to prove her method by previous week games

Here's the setup. Alice wants to send a bit b, which is either 0 or I, to Bob. There are two requirements.

1. Bob cannot determine the value of the bit without Alice's help.
2. Alice cannot change the bit once she sends it.

Bit Commitment, solution

- Alice puts the bit in a box, put her lock on, and send it to Bob
- When Bob wants the value of the bit, Alice removes the lock and Bob opens the box
- How do you implement this mathematically?
- (Alice and Bob do not have to be in the same room when the bit is revealed)

Bit Commitment, solution

- Alice and Bob agree on a large prime $p=3(\bmod 4) \&$ primitive root α
- Alice chooses a random number $x<p-1$, whose $2^{\text {nd }}$ bit x_{1} is b
- She sends

$$
\beta \equiv \alpha^{x}(\bmod p)
$$

- We assume that Bob cannot compute discrete log of p
- Therefore, he cannot determine the value of $b=x_{1}$
- When Bob wants to know the value of b_{1}, Alice sends him the full value of x, and by looking at $x \bmod 4$, he find b
- Alice cannot send a value of x different than the one already used
- Bob checks, for unique solution at $\mathrm{x}<\mathrm{p}-1$, can be done for 100 bits for ex.

$$
\beta \equiv \alpha^{x}(\bmod p)
$$

Diffie-Hellman Key Exchange

- Establish keys for use in cryptographic protocols (DES or AES)
- Two parties are widely separated, communication over public channel
- Public key methods (RSA) is one of the solution
- Discrete log logarithms
- Alice and Bob establish a private key K

Diffie-Hellman Key Exchange

1. Either Alice or Bob selects a large, secure prime number p and a primitive root $\alpha(\bmod p)$. Both p and α can be made public.
2. Alice chooses a secret random x with $1 \leq x \leq p-2$, and Bob selects a secret random y with $1 \leq y \leq p-2$.
3. Alice sends $\alpha^{x}(\bmod p)$ to Bob, and Bob sends $\alpha^{v}(\bmod p)$ to Alice.
4. Using the messages that they each have received, they can each calculate the session key K. Alice calculates K by $K \equiv\left(\alpha^{\nu}\right)^{x}(\bmod p)$, and Bob calculates K by $K \equiv\left(\alpha^{\alpha}\right)^{v}(\bmod p)$.

The ElGamal Public Key Cryptosystem

- Difficulty based on computing discrete logarithms
- Alice wants to send message m to Bob
- Bob chooses a large prime p and a primitive root α
- Assume m is an integer between 0 and p
- Bob chooses a secret integer a and computes: $\beta \equiv \alpha^{a}(\bmod p)$
- The information (p, α, β) is made public

Alice actions

1. Downloads (p, α, β)
2. Chooses a secret random integer k and computes $r \equiv \alpha^{k}(\bmod p)$
3. Computes $t \equiv \beta^{k} m(\bmod p)$
4. Sends the pair (r, t) to Bob

Bob decrypts by computing

$$
t T^{-a} \equiv m \quad(\bmod p) .
$$

This works because

$$
t T^{-a} \equiv \beta^{k} m\left(\alpha^{k}\right)^{-a} \equiv\left(\alpha^{a}\right)^{k} m \alpha^{-a k} \equiv m \quad(\bmod p)
$$

Digital Signatures

- With the development of electronics commerce and electronics documents, the traditional methods of signature no longer suffice
- Electronics forgery, changing the digitized signatures
- We require digital signature not to be separated from the document
- Cannot be attached to other message(s), the signature is tied only to the signer and message
- Digital signature needs to be easily verified by other parties
- Two distinct steps: the signing process and the verification process
- We are not trying to encrypt the message!

RSA Signature

Bob has a document m that Alice agrees to sign. They do the following:

1. Alice generates two large primes p, q, and computes $n=p q$. She chooses e_{A} such that $1<e_{A}<\phi(n)$ with $\operatorname{gcd}\left(e_{A}, \phi(n)\right)=1$, and calculates d_{A} such that $e_{A} d_{A} \equiv 1$ (mod $\phi(n)$). Alice publishes $\left(e_{A}, n\right)$ and keeps private d_{A}, p, q.
2. Alice's signature is

$$
y \equiv m^{d_{A}} \quad(\bmod n) .
$$

3. The pair (m, y) is then made public.

RSA Signature Verification

Bob can then verify that Alice really signed the message by doing the following:

1. Download Alice's $\left(e_{A}, n\right)$.
2. Calculate $z \equiv y^{c_{A}}(\bmod n)$. If $z=m$, then Bob accepts the signature as valid; otherwise the signature is not valid.

RSA Variant

- Signing of document without knowing its contents
- Suppose Bob has made an important discovery
- He wants to record publicly what he has done

1. Alice chooses an RSA modulus n ($n=p q$, the product of two large primes), an encryption exponent e, and decryption exponent d. She makes n and e public while keeping p, q, d private. In fact, she can erase p, q, d from her computer's memory at the end of the signing procedure.
2. Bob chooses a random integer $k(\bmod n)$ with $\operatorname{gcd}(k, n)=1$ and computes $t \equiv k^{e} m(\bmod n)$. He sends t to Alice.
3. Alice signs t by computing $s \equiv t^{d}(\bmod n)$. She returns s to Bob.
4. Bob computes $s / k(\bmod \pi)$. This is the signed message m^{d}.

$$
s / k \equiv t^{d} / k \equiv k^{e d} m^{d} / k \equiv m^{d} \quad(\bmod n)
$$

