Department of Electronics
Cryptography

Fall 2019
Hasan Mahmood
hasan@qgau.edu.pk

Week 8 (23 & 24 October 2019)

mailto:hasan@qau.edu.pk

The Hash Functions

* Non-invertibility properties

* A cryptographic hash function h takes as input a message of arbitrary
length and produces as output a message digest of fixed length

* For example, 160 bits

ottt Lol {0}f0]1 e Long Message

Hash Function

1 1 1| o 160-Bit Message Digest

Hash function properties

1. Given a message m, the message digest 2(m) can be calculnted very
quickly.

2. Given a y, it is computationally infeasible to find an m' with A{m’) =y
(in other words, & is 2 one-way, or preimage resistant, function).
Note that if ¥ ig the message digest of some message, we are not trying
to find this message. We are only looking for some m' with A(m’) = 3.

3. It is computationally infeasible to find messages n; and mo with
h{m;) = h(mg) (in this case, the function & is said to be strongly
collision-free}.

Hash function

* Collision free (weakly)
* Preimage resistance
* Requirement 3 is the hardest one to satisfy

* In 2004, Wang, Feng, Lai, and Yu fond many examples of collisions for
the popular hash functions MD4, MD5, HAVAL-128 and RIPEMD

* This means that a valid digital signature on one certificate is also valid
for the other certificate.

* SHA-1 collision can be determined with around 29° calculations

Hash Example

* Efficient in computational requirements

e Start with a message m of arbitrary length L

* Break the message m into b-bit blocks, where n << L

* Denote these n-bit blocks by m, m = [my,my, -+, My
* The length, /=ceil[L/n], last block is padoied with zeroes

* We write the jth block m; as row vector

m,; = [mjlnmjirmjﬂr'”:mjn]

Example

 Stack these row vectors to form an array

m)] Mmia
hi =m,; & my@---8my. l- Moy ™oz
L Ty TMya

+ ¥

@ &

| .

[EJ C2

s
®

{

Hash example

* Input is arbitrary length message
e Qutput is n-bit message digest
* It is not considered cryptographically secure

* Practical cryptographic hash functions typically make use of several
other bit level operations

* Need to avoid collision
 Bit rotation is used, similar to DES

Simple Hash with rotation operation

T My Tyhya e Mgy]
Mag T3 -+ Mo
myy M4 mj2

l. my mwmyiyl 0 MY -1

v ¢ I
& @ & &

$ § § |
[E’[Co L Cn] = h{m]

The Secure Hash Algorithm (SHA)

* SHA-1 produces 160-bit hash
* The original message is broken into a set of fixed size blocks
* Last block is padded to fill out the block

* Message blocks are processed given sequence of rounds that use a
compression function h’

* Current block is combined with the result of previous rounds

* In a good compression function, makes each input bit effect as many
output bits as possible.

SHA-1

Take original message and pad it with a 1 bit followed by a sequence of
0 bits

Enough O bits are appended to make the mew message 64 bits shout of
the next highest multiple of 512 bits in length

We append the 64 bit representation of the length T of the message

For example, if the original message has 2800 bits, we add a 1 and 207
Os to obtain a new message of length 3008=6x512-64

Since 2800=101011110000, we append 52 Os followed by this number
Message length is 3072, broken down into six blocks of length 512

SHA operations

1. XAY = bitwise “and”, which is bitwise multiplication mod 2, or bitwise
minimum,

X VY = bitwise “or”, which is bitwise maximum,
. X @Y = bitwise addition mod 2.
—X changes 1s to (s and 0s to 1s .

X +Y = addition of X and Y mod 2*?, where X and Y are regarded
as integers mod 232.

AN

6. X — r = shift of X to the left by r positions (and the beginning wraps
around to the end).

SHA operations

(BAC)V ((-B)AD) if 0<t<18
- BeCoD i 20 < ¢ < 39
f(B.C,D)=1{ (BAC)V(BAD)V(CAD) if40<t <59
BaCeDD if60<t<78G

Define constants Ky, ..., Ko os follows:

5A827989 if 0<t<19
6EPSERA1 if20<t <39
BFLBBCDC if40 <t <09
CA62CIDE6 f60<t <79

ffg =

The SHA-1 Algorithm

Hy = 67452301
H, = EFCDABSY
H, = 98BADCFE
Hy = 10325476
H; = C3D2E1FO.

The SHA-1 Algorithm

1. Start with a message m. Append bits, as specificd in the
text, to obtain a message y of the form y = my||ma| - - - [|me,
where each m; has 512 bits.

2. Initialize Hy = 67452301, Ay = EFCDABSY, Hy =
98BADCFE, Hy = 10325476, Hy = C3D2FE1F0.

3. Fori=0to L — 1, do the following:

(a) Writem; = Wg| Wi - - [[Wis, where each W has 32 bits.

(b) For t = 16 to 79, let W; = (Wi_a @ Wig @ Wi_14 ®
Wirg) — 1

(C) LEtA=HUIB=H]l G=H21D=H3:E=Hd-

(d) For t = 0 to 79, do the following steps in succession:
T=(A~35+ fi(BBCLD)+E+W;+ Ky, E = D,
D=C,C=(B+~30),B=A A=T.

(E)LEtHu=Hu+A, H = H +8B, H = H,+C,
Hi=Hy+ D, Hy=H;+E.

4. Qutput Hy||H1||Hz | H3||Hy. This is the 160-bit hash value.

SHA-1 Step 3
A|BJC|IDIE
_Ll il
£ -+
Y |
5. » +
R W,
30+
Nk

t"-']*l—’/L + te— + fe—

X [4A]B D|E
» # h 4 L h 4
m—-s fK W fort:[0..19]

Y Y

Y h 4 Y
K, W, fort:/20..39]

||

mj —_—

b J h i Y
LK. W, fort:[40.59]

| L4

M —

for 1:/60...79]

LKW,

]

O+

Discrete Logarithm

* Based on difficulty of factoring, discrete logarithm has similar benefits
from complexity

* Fix a prime p, let a and B be nonzero integers mod p, suppose,

B =a” (mod p).

* The problem of finding x is called the discrete logarithm problem
* If nis the smallest positive integer such that

a”™ =1 (mod p)

* We may assume that, (discrete log of b with respect toa, 0 < x < n)

I = La(ﬁ)

Discrete Logarithms, example

e P=11, a=2
* Since 2°=9 (mod 11)
* We have L,(9)=6

* Also, 25=216=220=9 (mod 11), so we consider taking any one of 6, 16,
26 as the discrete logarithm

* Smallest nonnegative value, namely 6

* a is taken to be a primitive root of mod p, every B is a power of a
(mod p)

* If ais not a primitive root, then discrete logarithm will not be defined
for certain values of 3

Discrete log properties

For small p, it is easy to calculate discrete logs by exhaustive search, when p is
large, this is not feasible

Discrete logs are hard to compute in general, basis of several ciphers

Size of the largest primes for which discrete logs can be computed is
?pproxidmately the same size as the size of the largest integers that could be
actore

A function f(x) is called one-way function if f(x) is easy to compute, given y, it is
computationally infeasible to find x with f(x)=y

It is easy to compute o* (mod p), but solving a*= 3 for x is hard

Multiplication of large primes can also be regarded as (probable) one-way
function

It is easy to multiply large primes but difficult to factor the result to recover the
primes

Bit Commitment

* Alice claims that she has a method to predict the outcome of games
* She wans to sell her method to Bob

* Bob needs proof, for the game to be played coming weekend

 Alice does not want to disclose the result because Bob may bet

* Alice offers to prove her method by previous week games

Here's the setup. Alice wants to send a bit b, which is either 0 or I, to
Bob. There are two requirements,

1. Bob cannot determine the value of the bit without Alice’s help.

2. Alice cannot change the bit once she sends it.

Bit Commitment, solution

* Alice puts the bit in a box, put her lock on, and send it to Bob

* When Bob wants the value of the bit, Alice removes the lock and Bob
opens the box

* How do you implement this mathematically?

* (Alice and Bob do not have to be in the same room when the bit is
revealed)

Bit Commitment, solution

 Alice and Bob agree on a large prime p=3 (mod 4) & primitive root a
* Alice chooses a random number x < p-1, whose 2" bit x, is b
* She sends
A = o (mod p)
* We assume that Bob cannot compute discrete log of p
* Therefore, he cannot determine the value of b=x,

* When Bob wants to know the value of b,, Alice sends him the full value of
x, and by looking at x mod 4, he find b

 Alice cannot send a value of x different than the one already used

* Bob checks, for unique solution at x < p-1, can be done for 100 bits for ex.
A = ¢ (mod p)

Diffie-Hellman Key Exchange

e Establish keys for use in cryptographic protocols (DES or AES)

* Two parties are widely separated, communication over public channel
* Public key methods (RSA) is one of the solution

 Discrete log logarithms

 Alice and Bob establish a private key K

Diffie-Hellman Key Exchange

1. Either Alice or Bob selects a large, secure prime number p and a
primitive root a (mod p). Both p and a can be made public.

2. Alice chooses a secret random z with 1 < z € p— 2, and Bob selects
a secret random y with 1 Sy <p—2.

3. Alice sends a* (mod p) to Bob, and Bob sends a¥ {mod p) to Alice.

4. Using the messages that they each have received, they can each cal-
culate the session key K. Alice calculates I by K = (aV)* (mod p),
and Bob calculates K by I = (a*)¥ (mod p).

The ElGamal Public Key Cryptosystem

* Difficulty based on computing discrete logarithms

 Alice wants to send message m to Bob

* Bob chooses a large prime p and a primitive root a

e Assume m is an integer between 0 and p

* Bob chooses a secret integer a and computes: b= ot (mnd P)
* The information (p, a, B) is made public

Alice actions

1. Downloads (p, a, 4)
2. Chooses a secret random integer & and computes 7 = a* (mod p)
3. Computes ¢t = f*m (mod p)
4. Sends the pair (r,t) to Bob
Bob decrypts by computing
ir=m (mod p).
This works because

ir %= ﬁkm(a")‘“ = (a“)kma'“k =m (mod p).

Digital Signatures

e With the development of electronics commerce and electronics
documents, the traditional methods of signature no longer suffice

 Electronics forgery, changing the digitized signatures
* We require digital signature not to be separated from the document

e Cannot be attached to other message(s), the signature is tied only to
the signer and message

* Digital signature needs to be easily verified by other parties
* Two distinct steps: the signing process and the verification process
* We are not trying to encrypt the message!

RSA Signature

Bob has a document m that Alice agrees to sign. They do the following:

1. Alicc generates two large primes p, ¢, and computes n = pq. She
chooses e4 such that 1 < ex < @(n) with ged{ea, #{(n)) = 1, and
calculates d4 such that eqdq =1 (mod qﬁ(n)) Alice publishes {emn}
and keeps private d4, p, g.

2. Alice's signature is
y=m% (mod n).

3. The pair {m, y) is then made public.

RSA Signature Verification

Bob can then verify that Alice really signed the message by doing the
following:

1. Download Alice's (e4,n).

2. Calculate z = y*4 (mod n). If z = m, then Bob accepts the signature
as valid; otherwise the signature is not valid.

RSA Variant

* Signing of document without knowing its contents
e Suppose Bob has made an important discovery
* He wants to record publicly what he has done

. Alice chooses an RSA modulus n (n = pg, the product of two large
primes), an encryption exponent e, and decryption exponent d. She
makes n and e public while keeping p, q,d private. In fact, she can
erase p,q,d from her computer's memory at the end of the signing

procedure.

. Bob chooses a random integer & {mod n) with ged(k,n) = 1 and com-
putes ¢t = k*m (mod n). He sends ¢ to Alice.

. Alice signs ¢ by computing s =19 (mod n). She returns s to Bob.
. Bob computes s/k (mod n). This is the signed message m*.

s/k=tk=2kmi/k=m?® (modn),

