The RSA Algorithm

- Alice wants to send message to Bob
- No previous contact, not pre-communications key exchange
- All information will be potentially obtained by Eve
- Is it still possible to send that is not visible to Eve
- Alice has to send a key which Eve would intercept
- She could then decrypt all the subsequent messages
- Public Key Cryptosystem introduced by Diffie and Hellman [Diffie-Hellman]
- “Factorization of integers into their prime factors hard” is used, proposed by Rivest, Shamir and Adleman in 1977 aka RSA algorithm
RSA algorithm

• Bob chooses two distinct large prime p and q and multiplies them together to form

$$n = pq.$$

• He also chooses an encryption exponent e such that

$$\gcd(e, (p - 1)(q - 1)) = 1.$$

• He sends the pair (n, e) to Alice but keeps the values of p and q secret

• Alice never needs to know p and q to send her message to Bob securely
The RSA algorithm

• Alice writes her message as a number m
• If m is larger then n, she breaks the message into blocks
• Now each message has length less then n ($m<n$)
• Alice computes

$$c \equiv m^e \pmod{n}$$

• Alice send c to Bob
• Bob knows p and q, he can compute $(p-1)(q-1)$ to find decryption coefficient d, with

$$de \equiv 1 \pmod{(p-1)(q-1)}.$$

• Objective:

$$m \equiv c^d \pmod{n},$$
Example

• Encryption
• (5, 14) is the public key
• Take text, for example B→2
• $2^5 \pmod{14} = 32 \pmod{14} = 4 \pmod{14} = \text{ciphertext}=D$

• Decryption
• (11, 14) My decipher key
• $4^{11} \pmod{14} = 4194304 \pmod{14} = 2 \pmod{14} = \text{plaintext}$
Encryption

• Pick two prime numbers, p=2, q=7
• N=14, becomes mod in encryption and decryption key
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
• Exclude all even numbers, remove 7
• Remaining numbers: 1, 3, 5, 9, 11, 13: co prime with 14
• Phi (N)=(p-1)(q-1)
• Choose a number for e, 1<e<Phi(N), Coprime with n, Phi(N)
• e=5, lock: (5, 14)
Decryption

- Choose d: de \pmod{\phi(N)} = 1, \ 5xd \pmod{6} = 1
- 5, 10, 15, 20..., in mod 6: 5, 4, 3, 2, 1, 0: d=11, 5\times11=55=1 \pmod{6}
The RSA Algorithm

1. Bob chooses secret primes p and q and computes $n = pq$.
2. Bob chooses e with $\text{gcd}(e, (p - 1)(q - 1)) = 1$.
3. Bob computes d with $de \equiv 1 \pmod{(p - 1)(q - 1)}$.
4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m as $c \equiv m^e \pmod{n}$ and sends c to Bob.
6. Bob decrypts by computing $m \equiv c^d \pmod{n}$.
Example, large numbers

• Choose p and q as:

\[p = 885320963, \quad q = 238855417. \]

• then,

\[n = p \cdot q = 211463707796206571 \]

• Let the encryption key be:

\[e = 9007. \]

• The values of n and e are sent to Alice
Example, large numbers

• Alice computes

\[c \equiv m^e \equiv 30120^{9007} \equiv 113535859035722866 \pmod{n} \]

• She sends \(c \) to Bob, since Bob knows \(p \) and \(q \), he knows \((p-1)(q-1)\), he computes \(d \), such that,

\[de \equiv 1 \pmod{(p - 1)(q - 1)} \]

\[d = 116402471153538991. \]

\[c^d \equiv 113535859035722866^{116402471153538991} \equiv 30120 \pmod{n} \]
Treaty Verification

• Countries A and B have signed a nuclear test ban treaty
• Each wants to make sure the other doesn’t test any bombs
• Country A is going to use seismic data to monitor country B
• Country A wants to put sensors in B, which then send data back to A
• Two problems

1. Country A wants to be sure that Country B doesn’t modify the data.

2. Country B wants to look at the message before it’s sent to be sure that nothing else, such as espionage data, is being transmitted.
Treaty Verification

- Reversing RSA
- A chooses $n=pq$, the product of two large primes, determines e and d
- The numbers n and e are given to B, but p, q and d are kept secret
- Sensor is temper proof, buried deep, collects data x
- Sensors use d to encrypt x to $y=x^d \pmod{n}$
- Both x and y are sent first to country B, which checks $y^e=x \pmod{n}$
- If so, it knows that the encrypted message y corresponds to the data x
- Forwards the pair x, y to A
- A checks $y^e=x \pmod{n}$
- If so, A is sure that the number x is not modified
- If x is chosen, then solving $y^ex \pmod{n}$ for y is the same as decrypting the RSA message x.
The Hash Functions

- Non-invertibility properties
- A cryptographic hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length
- For example, 160 bits

![Diagram showing hash function processing a long message to produce a 160-bit message digest.](attachment:image.png)
Hash function properties

1. Given a message \(m \), the message digest \(h(m) \) can be calculated very quickly.

2. Given a \(y \), it is computationally infeasible to find an \(m' \) with \(h(m') = y \) (in other words, \(h \) is a one-way, or preimage resistant, function). Note that if \(y \) is the message digest of some message, we are not trying to find this message. We are only looking for some \(m' \) with \(h(m') = y \).

3. It is computationally infeasible to find messages \(m_1 \) and \(m_2 \) with \(h(m_1) = h(m_2) \) (in this case, the function \(h \) is said to be strongly collision-free).
Hash function

• Collision free (weakly)
• Preimage resistance
• Requirement 3 is the hardest one to satisfy
• In 2004, Wang, Feng, Lai, and Yu found many examples of collisions for the popular hash functions MD4, MD5, HAVAL-128 and RIPEMD
• This means that a valid digital signature on one certificate is also valid for the other certificate.
• SHA-1 collision can be determined with around 2^{69} calculations
Hash Example

- Efficient in computational requirements
- Start with a message m of arbitrary length L
- Break the message m into b-bit blocks, where $n << L$
- *Denote* these n-bit blocks by m_j, $m = [m_1, m_2, \cdots, m_l]$
- The length, $l=\text{ceil}[L/n]$, last block is padded with zeroes
- We write the jth block m_j as row vector

\[m_j = [m_{j1}, m_{j2}, m_{j3}, \cdots, m_{jn}] \]
Example

- Stack these row vectors to form an array

\[h_i = m_{1i} \oplus m_{2i} \oplus \cdots \oplus m_{li}. \]

\[
\begin{bmatrix}
 m_{11} & m_{12} & \cdots & m_{1n} \\
 m_{21} & m_{22} & \cdots & m_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{li} & m_{i2} & \cdots & m_{in}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
\end{bmatrix} = h(m).
Hash example

• Input is arbitrary length message
• Output is n-bit message digest
• It is not considered cryptographically secure
• Practical cryptographic hash functions typically make use of several other bit level operations
• Need to avoid collision
• Bit rotation is used, similar to DES
Simple Hash with rotation operation

\[
\begin{bmatrix}
 m_{11} & m_{12} & \cdots & m_{1n} \\
 m_{22} & m_{23} & \cdots & m_{21} \\
 m_{33} & m_{34} & \cdots & m_{32} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{ll} & m_{l,l+1} & \cdots & m_{l,l-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
\end{bmatrix}
\] = \(h(m) \).
The Secure Hash Algorithm (SHA)

• SHA-1 produces 160-bit hash
• The original message is broken into a set of fixed size blocks
• Last block is padded to fill out the block
• Message blocks are processed via sequence of rounds that use a compression function h'
• Current block is combined with the result of previous rounds
• In a good compression function, makes each input bit effect as many output bits as possible.
SHA-1

Take original message and pad it with a 1 bit followed by a sequence of 0 bits

Enough 0 bits are appended to make the new message 64 bits short of the next highest multiple of 512 bits in length

We append the 64 bit representation of the length T of the message

For example, if the original message has 2800 bits, we add a 1 and 207 0s to obtain a new message of length $3008 = 6 \times 512 - 64$

Since $2800 = 101011110000$, we append 52 0s followed by this number

Message length is 3072, broken down into six blocks of length 512
SHA operations

1. \(X \land Y = \text{bitwise "and"} \), which is bitwise multiplication mod 2, or bitwise minimum.

2. \(X \lor Y = \text{bitwise "or"} \), which is bitwise maximum.

3. \(X \oplus Y = \text{bitwise addition mod 2} \).

4. \(\neg X \) changes 1s to 0s and 0s to 1s.

5. \(X + Y = \text{addition of } X \text{ and } Y \mod 2^{32} \), where \(X \) and \(Y \) are regarded as integers mod \(2^{32} \).

6. \(X \leftarrow \tau = \text{shift of } X \text{ to the left by } \tau \text{ positions (and the beginning wraps around to the end)} \).
SHA operations

\[f_t(B, C, D) = \begin{cases}
 (B \land C) \lor ((\neg B) \land D) & \text{if } 0 \leq t \leq 19 \\
 B \oplus C \oplus D & \text{if } 20 \leq t \leq 39 \\
 (B \land C) \lor (B \land D) \lor (C \land D) & \text{if } 40 \leq t \leq 59 \\
 B \oplus C \oplus D & \text{if } 60 \leq t \leq 79
\end{cases} \]

Define constants \(K_0, \ldots, K_{79} \) as follows:

\[K_t = \begin{cases}
 5A827999 & \text{if } 0 \leq t \leq 19 \\
 6ED9EBA1 & \text{if } 20 \leq t \leq 39 \\
 8F1B8C1D6 & \text{if } 40 \leq t \leq 59 \\
 CA62C1D6 & \text{if } 60 \leq t \leq 79
\end{cases} \]
The SHA-1 Algorithm

1. Start with a message \(m \). Append bits, as specified in the text, to obtain a message \(y \) of the form \(y = m_1 \| m_2 \| \cdots \| m_L \) where each \(m_i \) has 512 bits.
2. Initialize \(H_0 = 67452301 \), \(H_1 = EFCDA\text{B}89 \), \(H_2 = 98\text{BADCFE} \), \(H_3 = 10325476 \), \(H_4 = C3D2E1F0 \).
3. For \(i = 0 \) to \(L - 1 \), do the following:
 (a) Write \(m_i = W_0 \| W_1 \| \cdots \| W_{15} \) where each \(W_j \) has 32 bits.
 (b) For \(t = 16 \) to \(79 \), let \(W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) \leftarrow 1 \)
 (c) Let \(A = H_0 \), \(B = H_1 \), \(C = H_2 \), \(D = H_3 \), \(E = H_4 \).
 (d) For \(t = 0 \) to \(79 \), do the following steps in succession:
 \[T = (A \leftarrow 5) + f_t(B, C, D) + E + W_t + K_t, \quad E = D, \quad D = C, \quad C = (B \leftarrow 30), \quad B = A, \quad A = T. \]
 (e) Let \(H_0 = H_0 + A \), \(H_1 = H_1 + B \), \(H_2 = H_2 + C \), \(H_3 = H_3 + D \), \(H_4 = H_4 + E \).

4. Output \(H_0 \| H_1 \| H_2 \| H_3 \| H_4 \). This is the 160-bit hash value.
SHA-1 Step 3