Department of Electronics

Cryptography

Fall 2019
Hasan Mahmood
hasan@qau.edu.pk

Week 7 (16 \& 17 October 2019)

The RSA Algorithm

- Alice wants to send message to Bob
- No previous contact, not pre-communications key exchange
- All information will be potentially obtained by Eve
- Is it still possible to send that is not visible to Eve
- Alice has to send a key which Eve would intercept
- She could then decrypt all the subsequent messages
- Public Key Cryptosystem introduced by Diffie and Hellman [Diffie-Hellman]
- "Factorization of integers into their prime factors hard" is used, proposed by Rivest, Shamir and Adleman in 1977 aka RSA algorithm

RSA algorithm

- Bob chooses two distinct large prime p and q and multiplies them together to form

$$
n=p q .
$$

- He also chooses an encryption exponent e such that

$$
\operatorname{gcd}\left(e_{1}(p-1)(q-1)\right)=1
$$

- He sends the pair (n, e) to Alice but keeps the values of p and q secret
- Alice never needs to know p and q to send her message to Bob securely

The RSA algorithm

- Alice writes her message as a number m
- If m is larger then n, she breaks the message into blocks
- Now each message has length less then $n(m<n)$
- Alice computes

$$
c \equiv m^{c} \quad(\bmod n)
$$

- Alice send c to Bob
- Bob knows p and q, he can compute (p-1)(q-a) to find decryption coefficient d, with

$$
d e \equiv 1(\bmod (p-1)(q-1))
$$

- Objective:

$$
m \equiv c^{d}(\bmod n)
$$

Example

- Encryption
- $(5,14)$ is the public key
- Take text, for example B->2
- $2^{\wedge} 5(\bmod 14)=32(\bmod 14)=4(\bmod 14)=c i p h e r t e x t=D$
- Decryption
- $(11,14)$ My decipher key
- $4^{\wedge} 11(\bmod 14)=4194304(\bmod 14)=2(\bmod 14)=$ plaintext

Encryption

- Pick two prime numbers, $\mathrm{p}=2, \mathrm{q}=7$
- $N=14$, becomes mod in encryption and decryption key
- $1,2,3,4,5,6,7,8,9,10,11,12,13,14$
- Exclude all even numbers, remove 7
- Remaining numbers: $1,3,5,9,11,13$: co prime with 14
- $\operatorname{Phi}(N)=(p-1)(q-1)$
- Choose a number for e, $1<\mathrm{e}<\mathrm{Phi}(\mathrm{N})$, Coprime with $\mathrm{n}, \mathrm{Phi}(\mathrm{N})$
- e=5, lock: $(5,14)$

Decryption

- Choose d: de $(\bmod \operatorname{phi}(\mathrm{N}))=1,5 x d(\bmod 6)=1$
- $5,10,15,20 \ldots$, in $\bmod 6: 5,4,3,2,1,0: d=11,5 \times 11=55=1(\bmod 6)$

The RSA Algorithm

1. Bob chooses secret primes p and q and computes $\pi=p q$.
2. Bob chooses e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.
3. Bob computes d with $d e \equiv 1(\bmod (p-1)(q-1))$.
4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m as $c \equiv m^{2}(\bmod n)$ and sends c to Bob.
6. Bob decrypts by computing $m \equiv c^{d}(\bmod n)$.

Example, large numbers

- Choose p and q as:

$$
p=885320963, \quad q=238855417
$$

- then,

$$
n=p \cdot q=211463707796206571
$$

- Let the encryption key be:

$$
e=9007
$$

- The values of n and e are sent to Alice

Example, large numbers

- Alice computes

$$
c \equiv m^{e} \equiv 30120^{9007} \equiv 113535859035722866 \quad(\bmod \pi)
$$

- She sends c to Bob, since Bob knows p and q, he knows ($p-1$)($q-1$), he computes d, such that,

$$
\begin{gathered}
d e \equiv 1 \quad(\bmod (p-1)(q-1)) \\
d=116402471153538991 .
\end{gathered}
$$

$c^{d} \equiv 113535859035722866^{116403471533538591} \equiv 30120(\bmod n)$

Treaty Verification

- Countries A and B have signed a nuclear test ban treaty
- Each wants to make sure the other doesn't test any bombs
- Country A is going to use seismic data to monitor country B
- Country A wants to put sensors in B, which then send data back to A
- Two problems

1. Country A wants to be sure that Country B doesn't modify the data.
2. Country B wants to look at the message before it's sent to be sure that nothing else, such as espionage data, is being transmitted.

Treaty Verification

- Reversing RSA
- A chooses $n=p q$, the product of two large primes, determines e and d
- The numbers n and e are given to B , but p, q and d are kept secret
- Sensor is temper proof, buried deep, collets data x
- Sensors uses d to encrypt x to $y=x^{\wedge} d(\bmod n)$
- Both x and y are sent first to country B, which checks $y^{\wedge} e=x(\bmod n)$
- If so, it knows that the encrypted message y corresponds to the data x
- Forwards the pair x, y to A
- A checks yat $\mathrm{y}^{\wedge} \mathrm{e}=\mathrm{x}(\bmod \mathrm{n})$
- If so, A is sure that the number x is not modified
- If x is chosen, then solving $y^{\wedge} \operatorname{ex}(\bmod n)$ for y is the same as decrypting the RSA message x .

The Hash Functions

- Non-invertibility properties
- A cryptographic hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length
- For example, 160 bits

Hash function properties

1. Given a message m, the message digest $h(m)$ can be calculated very quickly.
2. Given a y, it is computationally infeasible to find an m^{\prime} with $h\left(m^{\prime}\right)=y$ (in other words, h is a one-way, or preimage resistant, function). Note that if y is the message digest of some message, we are not trying to find this message. We are only looking for some m^{\prime} with $h\left(m^{\prime}\right)=y$.
3. It is computationally infeasible to find messages m_{1} and m_{2} with $h\left(m_{1}\right)=h\left(m_{2}\right)$ (in this case, the function h is said to be strongly collision-free).

Hash function

- Collision free (weakly)
- Preimage resistance
- Requirement 3 is the hardest one to satisfy
- In 2004, Wang, Feng, Lai, and Yu fond many examples of collisions for the popular hash functions MD4, MD5, HAVAL-128 and RIPEMD
- This means that a valid digital signature on one certificate is also valid for the other certifite.
- SHA-1 collision can be determined with around 2^69 calculations

Hash Example

- Efficient in computational requirements
- Start with a message m of arbitrary length L
- Break the message m into b-bit blocks, where $n \ll L$
- Denote these n-bit blocks by m_{j}

$$
m=\left[m_{1}, m_{2}, \cdots, m_{l}\right]
$$

- The length, $l=$ ceil $[L / n]$, last block is padded with zeroes
- We write the j th block m_{j} as row vector

$$
m_{j}=\left[m_{j 1}, m_{j 2}, m_{j 3}, \cdots, m_{j n}\right]
$$

Example

- Stack these row vectors to form an array

$$
\left.\begin{array}{rl}
h_{\mathbf{i}}=\pi_{1 i} \oplus m_{2 i} \oplus \cdots \oplus m_{l i} \cdot & {\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{l 1} & m_{l 2} & \cdots & m_{l n}
\end{array}\right]} \\
\Downarrow & \Downarrow \\
\Downarrow & \Downarrow \\
\oplus & \oplus \\
\oplus & \oplus \\
\Downarrow & \Downarrow \\
\Downarrow & \Downarrow \\
c_{1} & c_{2} \\
\cdots & c_{n}
\end{array}\right]=h(m) .
$$

Hash example

- Input is arbitrary length message
- Output is n-bit message digest
- It is not considered cryptographically secure
- Practical cryptographic hash functions typically make use of several other bit level operations
- Need to avoid collision
- Bit rotation is used, similar to DES

Simple Hash with rotation operation

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{22} & m_{23} & \cdots & m_{21} \\
m_{33} & m_{34} & \cdots & m_{32} \\
\vdots & \vdots & \ddots & \vdots \\
m_{1 l} & m_{l, l+1} & \cdots & m_{l, l-1}
\end{array}\right]} \\
& \Downarrow \\
& \Downarrow \\
& \Downarrow \\
& \oplus \\
& \oplus \\
& \oplus \\
& \Downarrow \\
& \Downarrow
\end{aligned} \underset{\oplus}{\Downarrow}
$$

The Secure Hash Algorithm (SHA)

- SHA-1 produces 160 -bit hash
- The original message is broken into a set of fixed size blocks
- Last block is padded to fill out the block
- Message blocks are processed gvia sequence of rounds that use a comp[ression function h^{\prime}
- Currend block is combined with the result of previous rounds
- In a good compression function, makes each input bit effect as many output bits as possible.

SHA-1

Take original meswsage and paddi it with a 1 bit followind by a sequence of 0 bits
Enough 0 bits are appended to make the mew message 64 bits shout of the next highest multiple of 512 bits in length
We append the 64 bit reprenesntation of the length T of the message
For example, if the original message has 2800 bits, we add a 1 and 207 Os to obtain a new message of length $3008=6 \times 512-64$
Since 2800=101011110000, we append 52 0s followed by this number Message length is 3072, broken down into six blocks of length 512

SHA operations

1. $X \wedge Y=$ bitwise "and", which is bitwise multiplication mod 2 , or bitwise minimum.
2. $X \vee Y=$ bitwise "or", which is bitwise maximum.
3. $X \oplus Y=$ bitwise addition $\bmod 2$.
4. $\neg X$ changes 1 s to 0 s and 0 s to 1 s .
5. $X+Y=$ addition of X and $Y \bmod 2^{32}$, where X and Y are regarded as integers mod 2^{32}.
6. $X \hookleftarrow r=$ shift of X to the left by τ positions (and the beginning wraps around to the end).

SHA operations

$$
f_{t}(B, C, D)=\left\{\begin{array}{cl}
(B \wedge C) \vee((\neg B) \wedge D) & \text { if } 0 \leq t \leq 19 \\
B \oplus C \oplus D & \text { if } 20 \leq t \leq 39 \\
(B \wedge C) \vee(B \wedge D) \vee(C \wedge D) & \text { if } 40 \leq t \leq 59 \\
B \oplus C \oplus D & \text { if } 60 \leq t \leq 79
\end{array}\right.
$$

Define constants $K_{0}, \ldots, K_{i 9}$ as follows:

$$
K_{t}= \begin{cases}5 A B 27999 & \text { if } 0 \leq t \leq 19 \\ 6 E D 9 E B A 1 & \text { if } 20 \leq t \leq 39 \\ \text { BF1BBCDC } & \text { if } 40 \leq t \leq 59 \\ \text { CA62C1D6 } & \text { if } 60 \leq t \leq 79\end{cases}
$$

The SHA-1 Algorithm

$$
\begin{aligned}
& H_{0}=67452301 \\
& H_{1}=E F C D A B 89 \\
& H_{2}=98 B A D C F E \\
& H_{3}=10325476 \\
& H_{4}=C 3 D 2 E 1 F 0 .
\end{aligned}
$$

1. Start with a message m. Append bits, as specificd in the text, to obtain a message y of the form $y=m_{1}\left\|m_{2}\right\| \cdots \| m_{L}$, where each m_{i} has 512 bits.
2. Initialize $H_{0}=67452301, H_{1}=E F C D A B 89, H_{2}=$ $98 B A D C F E, H_{3}=10325476, H_{4}=C 3 D 2 E 1 F 0$.
3. For $i=0$ to $L-1$, do the following:
(a) Write $m_{i}=W_{0}\left\|W_{l}\right\| \cdots \| W_{15}$, where each W_{j} has 32 bits.
(b) For $t=16$ to 79 , let $W_{t}=\left(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus\right.$ $\left.W_{t-16}\right) \hookleftarrow 1$
(c) Let $A=H_{0}, B=H_{1}, C=H_{2}, D=H_{3}, E=H_{4}$.
(d) For $t=0$ to 79, do the following steps in succession: $T=(A \hookleftarrow 5)+f_{t}(B, C, D)+E+W_{t}+K_{t}, E=D$, $D=C, C=(B \hookleftarrow 30), B=A, A=T$.
(e) Let $H_{0}=H_{0}+A, \quad H_{1}=H_{1}+B, H_{2}=H_{2}+C$, $H_{3}=H_{3}+D_{1} \quad H_{4}=H_{4}+E$.
4. Output $H_{0}\left\|H_{1}\right\| H_{2}\left\|H_{3}\right\| H_{4}$. This is the 160 -bit hash value.

SHA-1 Step 3

