Department of Electronics
Cryptography

Fall 2019
Hasan Mahmood
hasan@qgau.edu.pk

Week 7 (16 & 17 October 2019)

mailto:hasan@qau.edu.pk

The RSA Algorithm

* Alice wants to send message to Bob

* No previous contact, not pre-communications key exchange

* All information will be potentially obtained by Eve

* |s it still possible to send that is not visible to Eve

* Alice has to send a key which Eve would intercept

e She could then decrypt all the subsequent messages

* Public Key Cryptosystem introduced by Diffie and Hellman [Diffie-Hellman]

* “Factorization of integers into their prime factors hard” is used, proposed
by Rivest, Shamir and Adleman in 1977 aka RSA algorithm

RSA algorithm

* Bob chooses two distinct large prime p and q and multiplies them
together to form

n = pq.

* He also chooses an encryption exponent e such that

ged(e,(p—1)(g — 1)) = 1.

* He sends the pair (n, e) to Alice but keeps the values of p and g secret

 Alice never needs to know p and g to send her message to Bob
securely

The RSA algorithm

 Alice writes her message as a number m
* If mis larger then n, she breaks the message into blocks
* Now each message has length less then n (m<n)

e Alice computes

c

c=m® (mod n)

e Alice send c to Bob

* Bob knows p and g, he can compute (p-1)(g-a) to find decryption
coefficient d, with

de=1 (mod (p—1)g-1)).
* Objective:

m=c® (mod n),

Example

* Encryption

* (5, 14) is the public key

* Take text, for example B->2

e 275 (mod 14)=32 (mod 14)=4 (mod 14)=ciphertext=D

* Decryption
* (11, 14) My decipher key
* 4711 (mod 14)=4194304 (mod 14)= 2 (mod 14)=plaintext

Encryption

* Pick two prime numbers, p=2, g=7

* N=14, becomes mod in encryption and decryption key
«1,2,3,45,6,7,8,9,10, 11,12, 13, 14

e Exclude all even numbers, remove 7

* Remaining numbers: 1, 3,5, 9, 11, 13: co prime with 14

* Phi (N)=(p-1)(g-1)

* Choose a number for e, 1<e<Phi(N), Coprime with n, Phi(N)
* e=5, lock: (5, 14)

Decryption

* Choose d: de (mod phi(N))=1, 5xd (mod 6)=1
5,10, 15, 20...., inmod 6:5, 4, 3, 2,1, 0: d=11, 5x11=55=1 (mod 6)

The RSA Algorithm

| 1. Bob chooses secret primes p and g and computes n = pgq.
| 2. Bob chooses e with ged(e, (p—1){(g~1)) = 1. |
3. Bob computes d with de=1 (mod {p—1)(g — 1)).

4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m as ¢ = m® (mod n) and sends c to Bob.
6. Bob decrypts by computing m = ¢? (mod n).

Example, large numbers

* Choose p and q as:

p = 885320063, g = 238855417.

e then,

n=p-q=211463707796206571

* Let the encryption key be:
e = J007.

 The values of n and e are sent to Alice

Example, large numbers

* Alice computes

c = m® = 30120°%°7 = 113535859035722866 (mod n)

* She sends c to Bob, since Bob knows p and g, he knows (p-1)(g-1), he
computes d, such that,

de = 1 (mod {p — 1)(qg — 1)).
d = 116402471153538991.

¢ = 113535859035722866" 1 0102171153538991 = 30120 (mod n)

Treaty Verification

* Countries A and B have signed a nuclear test ban treaty

* Each wants to make sure the other doesn’t test any bombs

* Country A is going to use seismic data to monitor country B

* Country A wants to put sensors in B, which then send data back to A
* Two problems

1. Country A wants to be sure that Country B doesn’t modify the data.

2. Country B wants to look at the message before it's sent to be sure that
nothing else, such as espionage data, is being transmitted.

Treaty Verification

* Reversing RSA

* A chooses n=pqg, the product of two large primes, determines e and d
e The numbers n and e are given to B, but p, g and d are kept secret

e Sensor is temper proof, buried deep, collets data x

* Sensors uses d to encrypt x to y=xd (mod n)

* Both x and y are sent first to country B, which checks y*e=x (mod n)

* If so, it knows that the encrypted message y corresponds to the data x
* Forwards the pairx, yto A

* A checks yat y*e=x (mod n)

* |fso, Ais sure that the number x is not modified

 If x is chosen, then solving y*ex (mod n) for y is the same as decrypting the RSA message
X.

The Hash Functions

* Non-invertibility properties

* A cryptographic hash function h takes as input a message of arbitrary
length and produces as output a message digest of fixed length

* For example, 160 bits

ottt Lol {0}f0]1 e Long Message

Hash Function

1 1 1| o 160-Bit Message Digest

Hash function properties

1. Given a message m, the message digest 2(m) can be calculnted very
quickly.

2. Given a y, it is computationally infeasible to find an m' with A{m’) =y
(in other words, & is 2 one-way, or preimage resistant, function).
Note that if ¥ ig the message digest of some message, we are not trying
to find this message. We are only looking for some m' with A(m’) = 3.

3. It is computationally infeasible to find messages n; and mo with
h{m;) = h(mg) (in this case, the function & is said to be strongly
collision-free}.

Hash function

* Collision free (weakly)
* Preimage resistance
* Requirement 3 is the hardest one to satisfy

* In 2004, Wang, Feng, Lai, and Yu fond many examples of collisions for
the popular hash functions MD4, MD5, HAVAL-128 and RIPEMD

* This means that a valid digital signature on one certificate is also valid
for the other certifite.

e SHA-1 collision can be determined with around 2269 calculations

Hash Example

* Efficient in computational requirements

e Start with a message m of arbitrary length L

* Break the message m into b-bit blocks, where n << L

* Denote these n-bit blocks by m, m = [my,my, -+, My
* The length, /=ceil[L/n], last block is padoied with zeroes

* We write the jth block m; as row vector

m,; = [mjlnmjirmjﬂr'”:mjn]

Example

 Stack these row vectors to form an array

m)] Mmia
hi =m,; & my@---8my. l- Moy ™oz
L Ty TMya

+ ¥

@ &

| .

[EJ C2

s
®

{

Hash example

* Input is arbitrary length message
e OQutput is n-bit message digest
* It is not considered cryptographically secure

* Practical cryptographic hash functions typically make use of several
other bit level operations

* Need to avoid collision
 Bit rotation is used, similar to DES

Simple Hash with rotation operation

T My Tyhya e Mgy]
Mag T3 -+ Mo
myy M4 mj2

l. my mwmyiyl 0 MY -1

v ¢ I
& @ & &

$ § § |
[E’[Co L Cn] = h{m]

The Secure Hash Algorithm (SHA)

* SHA-1 produces 160-bit hash
* The original message is broken into a set of fixed size blocks
* Last block is padded to fill out the block

* Message blocks are processed gvia sequence of rounds that use a
complression function h’

* Currend block is combined with the result of previous rounds

* In a good compression function, makes each input bit effect as many
output bits as possible.

SHA-1

Take original meswsage and paddi it with a 1 bit followind by a
sequence of 0 bits

Enough O bits are appended to make the mew message 64 bits shout of
the next highest multiple of 512 bits in length

We append the 64 bit reprenesntation of the length T of the message

For example, if the original message has 2800 bits, we add a 1 and 207
Os to obtain a new message of length 3008=6x512-64

Since 2800=101011110000, we append 52 Os followed by this number
Message length is 3072, broken down into six blocks of length 512

SHA operations

1. XAY = bitwise “and”, which is bitwise multiplication mod 2, or bitwise
minimum,

X VY = bitwise “or”, which is bitwise maximum,
. X @Y = bitwise addition mod 2.
—X changes 1s to (s and 0s to 1s .

X +Y = addition of X and Y mod 2*?, where X and Y are regarded
as integers mod 232.

AN

6. X — r = shift of X to the left by r positions (and the beginning wraps
around to the end).

SHA operations

(BAC)V ((-B)AD) if 0<t<18
- BeCoD i 20 < ¢ < 39
f(B.C,D)=1{ (BAC)V(BAD)V(CAD) if40<t <59
BaCeDD if60<t<78G

Define constants Ky, ..., Ko os follows:

5A827989 if 0<t<19
6EPSERA1 if20<t <39
BFLBBCDC if40 <t <09
CA62CIDE6 f60<t <79

ffg =

The SHA-1 Algorithm

Hy = 67452301
H, = EFCDABSY
H, = 98BADCFE
Hy = 10325476
H; = C3D2E1FO.

The SHA-1 Algorithm

1. Start with a message m. Append bits, as specificd in the
text, to obtain a message y of the form y = my||ma| - - - [|me,
where each m; has 512 bits.

2. Initialize Hy = 67452301, Ay = EFCDABSY, Hy =
98BADCFE, Hy = 10325476, Hy = C3D2FE1F0.

3. Fori=0to L — 1, do the following:

(a) Writem; = Wg| Wi - - [[Wis, where each W has 32 bits.

(b) For t = 16 to 79, let W; = (Wi_a @ Wig @ Wi_14 ®
Wirg) — 1

(C) LEtA=HUIB=H]l G=H21D=H3:E=Hd-

(d) For t = 0 to 79, do the following steps in succession:
T=(A~35+ fi(BBCLD)+E+W;+ Ky, E = D,
D=C,C=(B+~30),B=A A=T.

(E)LEtHu=Hu+A, H = H +8B, H = H,+C,
Hi=Hy+ D, Hy=H;+E.

4. Qutput Hy||H1||Hz | H3||Hy. This is the 160-bit hash value.

SHA-1 Step 3
A|BJC|IDIE
_Ll il
£ -+
Y |
5. » +
R W,
30+
Nk

t"-']*l—’/L + te— + fe—

X [4A]B D|E
» # h 4 L h 4
m—-s fK W fort:[0..19]

Y Y

Y h 4 Y
K, W, fort:/20..39]

||

mj —_—

b J h i Y
LK. W, fort:[40.59]

| L4

M —

for 1:/60...79]

LKW,

]

O+

