Modes of operation

- DES is a block cipher, 64-bits blocks, longer or shorter messages
- Character by character transmission (messages shorter than 64-bits)
- Many modes of operation, allowing users to choose appropriate modes to meet the requirements of their applications

1. Electronics codebook (ECB)
2. Cipher block chaining (CBC)
3. Cipher feedback (CFB)
4. Output feedback (OFB)
5. Counter (CTR)
Electronics Codebook (ECB)

• Break plaintext into appropriate sized blocks, and process separately
• Encryption function E_k is used
• This is know as the electronics codebook (ECB) mode of operation
• Plaintext: $P=[P_1, P_2, P_3, ..., P_L]$
• Cyphertext : $C=[C_1, C_2, ..., C_L]$
• Where $C_j=E_k(P_j)$ is the encryption of P_j using key K
• Apparent weakness when plaintext is long
ECB weakness

• Eve has been observing communication between Alice and Bob for long enough period of time
• If Eve has managed to acquire some plaintext pieces corresponding to the ciphertext pieces (that was observed)
• Eve can start to build up a codebook with which Eve can decipher future communication between Alice an Bob
• Eve never needs to calculate the Key
• Codebook is used to decipher the communication
• Real problem if the fragments are repeated in the plaintext
• Email header example, it repeats on specific dates
• False ciphertext message corrupt the original message

Date: Tue, 29 Feb 2000 13:44:38 -0500 (EST)
Cipher Block Chaining (CBC)

- Reduce problem in ECB mode is to use chaining
- Chaining is a feedback mechanism where the encryption of block depends on the encryption of the previous blocks
- In general, encryption proceeds as

 \[C_j = E_K(P_j \oplus C_{j-1}), \]

- With decryption as

 \[P_j = D_K(C_j) \oplus C_{j-1} \]
CBC
Cipher Feedback (CFB)

• CBC and ECB work when complete block of 64-bit of plaintext is available
• Based on Linear Feedback Shift Register (LFSR)
• Cipher feedback mode is a stream mode of operation that produces pseudorandom bits using the block cipher E_K
• In general, it operates in a k-bit mode, where each application produces k random bits XORing with the plaintext (8-bit version)
• Useful for interactive computer applications
• Plaintext is broken into 8-bit pieces $P=[P_1, P_2, ...]$
Cipher Feedback (CFB) Encryption

- An initial 64-bit X_1 is chosen, then for $j=1,2,3,...$ the following is performed:

\[
\begin{align*}
O_j &= L_8(E_K(X_j)) \\
C_j &= P_j \oplus O_j \\
X_{j+1} &= R_{56}(X_j) \| C_j,
\end{align*}
\]

- $L_8(X)$ denotes the 8 leftmost bits of X
- $R_{56}(X)$ denotes the rightmost 56 bits of X
- $X \| Y$ denotes the string obtained by wiring X followed by Y
CFM

Block diagram
Decryption is done with the following steps:

\[P_j = C_j \oplus L_8(E_K(X_j)) \]

\[X_{j+1} = R_{56}(X_j) \mathbin{\|} C_j. \]
Output Feedback (OFB)

• CBC and CFB modes of operation exhibit a drawback in that errors prorogate for a duration of time corresponding to the block size
• Stream cipher, XORing the message with a pseudo0random bit stream generation by the block cipher
• It avoids error propagation

\[
O_j = L_8(E_K(X_j)) \\
X_{j+1} = R_{56}(X_j) \| O_j \\
C_j = P_j \oplus O_j.
\]
Counter (CTR)

- Based on the ideas that were used in OFB mode
- Creates output key stream that is XORed with chunks of plaintext to produce ciphertext

\[
\begin{align*}
X_j & = X_{j-1} + 1 \\
O_j & = L_8(E_K(X_j)) \\
C_j & = P_j \oplus O_j
\end{align*}
\]
CTR

\[X_i \]
\[X_i = X_i + 1 \]
\[E_x \]
\[O_i \]
8 bits
\[P_i \]
8 bits
\[C_i \]

\[X_i = X_i + 1 \]
\[E_x \]
\[O_i \]
8 bits
\[P_i \]
8 bits
\[C_i \]

\[X_i = X_i + 1 \]
\[E_x \]
\[O_i \]
8 bits
\[P_i \]
8 bits
\[C_i \]

\[\ldots \]
The Advanced Encryption Standard: Rijndael

• In 1997, NIST CFP to replace DES (15 proposals submitted, 5 finalist)
• Key sizes 128, 192 and 256 on blocks of 128 bits
• Not computationally complex, 8-bit, 16-bit computers etc.
 1. MARS (from IBM)
 2. RC6 (from RSA laboratories)
 3. Rijndael (from Joan Daemen and Vincent Rijmen)
 4. Serpent (from Ross Anderson, Eli Biham, and Lars Kundsen)
 5. Twofish (from Bruce Schneier, John Kelsey, Dounig Whiting, David Wagner, Chris Hall and Niels Ferguson)
• Rijndael was chosen as the Advanced Encryption Standard
AES Basic algorithm, basic steps

- Modes of operation: ECB, CBC, CFB, OFB and CTR
- 10 rounds (when key is 192/256 bits, 12/14 rounds are used)
- Each round has a round key, derived from the original key
- Four basic steps, called the layers, that are used to form the rounds
1. The ByteSub Transformation (BS): This non-linear layer is for resistance to differential and linear cryptanalysis attacks.

2. The ShiftRow Transformation (SR): This linear mixing step causes diffusion of the bits over multiple rounds.

3. The MixColumn Transformation (MC): This layer has a purpose similar to ShiftRow.

4. AddRoundKey (ARK): The round key is XORed with the result of the above layer.

A round is then

\[\text{ByteSub} \rightarrow \text{ShiftRow} \rightarrow \text{MixColumn} \rightarrow \text{AddRoundKey} \rightarrow. \]
<table>
<thead>
<tr>
<th>Rijndael Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ARK, using the 0th round key.</td>
</tr>
<tr>
<td>3. A final round: BS, SR, ARK, using the 10th round key.</td>
</tr>
</tbody>
</table>
AES Layers

• 128-bits are grouped into 16 bytes of 8-bits each arranged into a matrix:

\[
\begin{pmatrix}
 a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
 a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
 a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\
 a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}
\end{pmatrix}
\]

• Each byte has a multiplicative inverse, that is, there is a byte \(b'\) such that \(b.b'=00000001\), \(GF(2^8)\)

• Irreducible polynomial of degree 8, \(X^8+X^4+X^3+X+1\)
The ByteSub Transformation

• Each byte in a matrix is changed to another byte by S-box.

• Write a byte as 8-bits: \textit{abcdefgh}, look for the entry in the \textit{abcd} row and \textit{efgh} column (numbered from 0 to 15)

<table>
<thead>
<tr>
<th>S-Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118</td>
</tr>
<tr>
<td>202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192</td>
</tr>
<tr>
<td>183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21</td>
</tr>
<tr>
<td>4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117</td>
</tr>
<tr>
<td>9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132</td>
</tr>
<tr>
<td>83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207</td>
</tr>
<tr>
<td>208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168</td>
</tr>
<tr>
<td>81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210</td>
</tr>
<tr>
<td>205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115</td>
</tr>
<tr>
<td>96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219</td>
</tr>
<tr>
<td>224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121</td>
</tr>
<tr>
<td>231 200 55 109 141 213 78 169 108 86 241 234 101 122 174 8</td>
</tr>
<tr>
<td>186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138</td>
</tr>
<tr>
<td>112 62 181 102 72 3 246 14 97 53 87 185 131 193 29 158</td>
</tr>
<tr>
<td>225 248 152 17 105 237 142 148 155 30 135 233 206 85 40 223</td>
</tr>
<tr>
<td>140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22</td>
</tr>
</tbody>
</table>
The output of ByteSub is again a 4×4 matrix of bytes, let's call it

$$
\begin{pmatrix}
 b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3} \\
 b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} \\
 b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} \\
 b_{3,0} & b_{3,1} & b_{3,2} & b_{3,3}
\end{pmatrix}.
$$
The ShiftRow Transformation

The four rows of the matrix are shifted cyclically to the left by offsets of 0, 1, 2, and 3, to obtain

\[
\begin{pmatrix}
c_{0,0} & c_{0,1} & c_{0,2} & c_{0,3} \\
c_{1,0} & c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,0} & c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,0} & c_{3,1} & c_{3,2} & c_{3,3}
\end{pmatrix}
= \begin{pmatrix}
b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3} \\
b_{1,1} & b_{1,2} & b_{1,3} & b_{1,0} \\
b_{2,2} & b_{2,3} & b_{2,0} & b_{2,1} \\
b_{3,3} & b_{3,0} & b_{3,1} & b_{3,2}
\end{pmatrix}.
\]
The MixColumn Transformation

\[
\begin{pmatrix}
00000010 & 00000011 & 00000001 & 00000001 \\
00000001 & 00000010 & 00000011 & 00000001 \\
00000001 & 00000001 & 0000010 & 00000011 \\
00000011 & 00000001 & 00000001 & 00000010 \\
\end{pmatrix}
\begin{pmatrix}
c_{0,0} & c_{0,1} & c_{0,2} & c_{0,3} \\
c_{1,0} & c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,0} & c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,0} & c_{3,1} & c_{3,2} & c_{3,3} \\
\end{pmatrix}
=
\begin{pmatrix}
d_{0,0} & d_{0,1} & d_{0,2} & d_{0,3} \\
d_{1,0} & d_{1,1} & d_{1,2} & d_{1,3} \\
d_{2,0} & d_{2,1} & d_{2,2} & d_{2,3} \\
d_{3,0} & d_{3,1} & d_{3,2} & d_{3,3} \\
\end{pmatrix}.
The RoundKey Addition

- 4x4 matrix key (128 bits), $K_{i,j}$, XORed with the o/p of MixColumn step
The Key Schedule

• Original Key consists of 128 bits, arranged into 4x4 matrix of bytes
• Expanded by adjoining 40 more elements
• Label the first four columns $W(0), W(1), W(2), W(3)$
• The new columns are generated recursively
• Columns up through $W(i-1)$ have been defined
• If i is not a multiple of 4, then

$$W(i) = W(i - 4) \oplus W(i - 1).$$

• If i is a multiple of 4, then

$$W(i) = W(i - 4) \oplus T(W(i - 1)).$$
The Key Schedule

- Where $T(W(i-1))$ is the transformation of $W(i-1)$ obtained as follows:
- Let the elements of the column $W(i-1)$ be a, b, c, d
- Shift these cyclically to obtain b, c, d, a
- Replace each of these bytes with the corresponding element in the S-box from the ByteSub step to get 4 bytes e, f, g, h
- Compute the round constant

$$r(i) = 00000010^{(i-4)/4}$$