EL-764 Cryptography Problem Set 1 Due Date: Sep 30 ${ }^{\text {th }}, \mathbf{2 0 1 9}$

Q.1: In this question suppose you have a language with only the 3 letters a, b, c, and they occur with frequencies $0.7,0.2,0.1$, respectively. The following ciphertext was encrypted by the Vigenere method

ABGBABBBAC.

Determine the key length.
Q.2: Suppose that you want to encrypt a message using an affine cipher. You let $a=0, b=1, \ldots, z=25$, but you also include ? $=26, ;=$ $27, "=28,!=29$. Therefore, you use $x \longrightarrow \alpha x+\beta(\bmod 30)$ for your encryption function, for some integers a and $/ 3$.
(a) Show that there are exactly eight possible choices for the integer α (that is, there are only eight choices of α (with $0<\alpha<30$) that allow you to decrypt).
(b) Suppose you try to use $\alpha=10, \beta=0$. Find two plaintext letters that encrypt to the same ciphertext letter.
Q.3: Suppose we work mod 27 instead of mod 26 for affine ciphers. How many keys are possible? What if we work mod 29?
Q.4: Suppose you encrypt using an affine cipher, then encrypt the encryption using another affine cipher (both are working mod 26). Is there any advantage to doing this, rather than using a single affine cipher? Why or why not?

